KAIWEETS Digital Multimeter TRMS 6000 Counts Voltmeter Auto-Ranging Fast Accurately Measures Voltage Current Amp Resistance Diodes Continuity Duty-Cycle Capacitance Temperature for Automotive
De afkortingen, dat is ook waar ik op zocht, dus die zetten we even bovenaan:
AGM is een diepontladingsaccu (deep-cycle accu)
Ah staat voor Ampère uur, een 45Ah(20h) accu kan bijvoorbeeld totaal 45Ah afgeven, gemeten over 20 uur
Ca/Ca zijn Accu’s met calcium in plaats van antimoon
CCA staat voor Cold Cranking Amps
MF staat voor onderhoudsvrij (Maintenance-Free)
PbSb/PbCa of kortweg Sb/Ca is een hybride accu
SLA (Sealed Lead Acid)
TPPL (Thin Plate Pure Lead)
VDS verwijst naar de (Duitse) certificering inzake veiligheid, met name brandveiligheid
VRLA (Valve Regulated Lead Acid)
De Primaire cel
In 1786 was wetenschappelijk onderzoeker Luigi Galvani bezig een kikker te ontleden. De kikker was opgehangen aan een koperen haak en telkens wanneer Galvani met zijn ijzeren mesje de kikkerpoot aanraakte, zag hij het kikkerpootje samentrekken. Galvani meende dat de energie die daarvoor nodig was, uit het dier zelf afkomstig was en noemde het ‘dierlijke electriciteit’.
Zijn vriend en medewetenschapper Allessandro Volta was het niet met hem eens. Hij meende dat de elektriciteit werd veroorzaakt door twee verschillende metalen die met elkaar waren verbonden door een vochtig medium. Experimenten bevestigden zijn zienswijze en in 1797 construeerde Volta de eerste echte accu, de Zuil van Volta. Deze zuil bestaat uit negenenveertig paren van koperen en zinken plaatjes, die met tussenvoeging van in een zuur gedrenkte stukjes wollen stof op elkaar zijn gelegd. De zuilen zijn aan de onderkant door een koperen strip verbonden. Bij geleidende verbinding van de bovenkanten sluit de kring en gaat er een stroom lopen, die wordt onderhouden door het geleidelijk oplossen van zink in het zuur.
In de Zuil van Volta wordt de elektriciteit opgewekt door een chemische reactie en de accu kan, eenmaal uitgeput, niet meer worden herladen. We spreken hier van een primaire cel.
De Secundaire cel
In de Zuil van Volta werd de elektriciteit opgewekt door een chemische reactie en de accu kon, eenmaal uitgeput, niet meer worden herladen. We noemen dit een primaire cel.
In 1803 vervaardigde Johann Wilhelm Ritter een soort omgekeerde Zuil van Volta. De Zuil van Ritter bestond uit enkel koperen schijfjes, ook nu gescheiden door laagjes stof of karton, die met een zoutoplossing waren doorweekt. De Zuil van Ritter kon zelf geen stroom produceren, maar kon deze daarentegen wel opslaan. Dat noemen we een secundaire cel of accu(mulator)
De stroom die nodig was om de (secundaire) zuil van Ritter te laden, kon alleen worden verkregen uit een primaire stroombron zoals de Zuil van Volta. Dat maakte Ritter’s ontdekking wel interessant, maar weinig geschikt voor praktische toepassing. Lees verder → Bericht ID 5829
Een beetje elektronica hobbyist moet eigenlijk wel een labvoeding hebben. Met een labvoeding kunnen schakelingen en losse elektronica gevoed worden met volledige controle over de voedingsspanning en de maximaal te leveren stroom (of stroombegrenzing). De voeding moet een regeling hebben voor de uitgangsspanning en een regeling voor de stroombegrenzing. Ook moet een labvoeding een schone ruisarme spanning produceren.
In veel (web)winkels worden normale voedingen soms wel als labvoeding aangeboden. Maar deze hebben niet altijd een regeling voor de stroombegrenzing en soms zelfs ook niet een regeling voor de uitgangsspanning. Beide regelingen zijn echter belangrijk als je zelfbouwschakelingen veilig wil testen, zonder gelijk een paar Ampère door je schakeling te duwen als het eens mis gaat! Een echte labvoeding heeft deze regelingen dus wel.
Labvoedingen heb je in alle vormen en maten. Veel modellen zijn uitgevoerd met één of meerdere transformatoren en de anderen zijn weer als schakelende voeding uitgevoerd. Er zijn modellen met analoge meters en modellen met digitale meters. De modellen met digitale meters heb je vervolgens ook weer in twee varianten; met of zonder microcontroller.
Modellen zonder microcontroller zijn traditioneel instelbaar met potmeters en modellen met microcontroller zijn instelbaar met een keypad, en een rotary-encoder. Deze voedingen hebben over het algemeen ook het voordeel van enkele geheugenplaatsen om een paar veelgebruikte instellingen op te kunnen slaan om deze daarmee snel in te kunnen stellen. Modellen met microcontroller zijn soms ook nog wat accurater, omdat de microcontroller is betrokken bij het regelcircuit. Echt luxe modellen met microcontroller hebben zelfs een USB aansluiting om deze te verbinden en te kunnen bedienen met een computer.
Wat hoe dan ook een labvoeding onderscheidt van een normale voeding, is de mogelijkheid tot het nauwkeurig instellen van een stroombegrenzing, naast natuurlijk de instelbare uitgangsspanning.
CC (Constant Current)
Is de ingestelde stroombegrenzing bereikt, dan gaat de voeding fungeren als een constante stroombron (Constant Current, C.C.). De stroom zal dan niet hoger worden dan de ingestelde waarde.
Dat is handig als je bijvoorbeeld een accu wil opladen. Maar de meeste elektronici zullen deze functie voornamelijk gebruiken als stroombegrenzer om de aangesloten schakeling te beschermen tegen beschadiging als er per ongeluk wat misgaat in de schakeling. Of om überhaupt te kijken of een schakeling goed gebouwd of ontworpen is. Dat is allemaal Constant Current dus.
Kenmerk: de voeding zal de uitgangsspanning zodanig omlaag regelen, zodat de stroom de ingestelde waarde niet zal gaan overschrijden. Een kenmerk van Constant Current mode is dat de voeding de uitgangsspanning regelt, maar de uitgangsstroom constant houdt. In Constant Current (C.C.) mode is de uitgangsstroomgestabiliseerd.
Wil je geen Constant Current gebruiken, dan stel je de labvoeding simpelweg op de maximale C.C. stand in. Maar helemaal uitschakelen kan niet. De voeding kan immers niet méér leveren. De maximaal in te stellen C.C. waarde dient dan als beveiliging voor de voeding. Dat maakt een labvoeding robuust.
CV (Constant Voltage)
Als de ingestelde stroombegrenzing niet in werking treedt, dan staat de voeding in de normale “Constant Voltage, C.V.” mode. Dat omschakelen gaat automatisch, zolang je de ingestelde C.C. waarde maar niet overschrijdt. Hoeveel stroom de aangesloten schakeling ook opneemt, de voeding zal de uitgangsspanning altijd op de ingestelde waarde proberen te houden. In Constant Voltage (C.V.) mode is de uitgangsspanninggestabiliseerd.
Een condensator bestaat uit twee van elkaar gescheiden geleiders. Door die scheiding kan een gelijkstroom niet door een condensator vloeien.
Een condensator kan gelijkstroom niet doorgeven maar wel een elektrische lading opslaan. Een condensator van 10 microfarad kan meer elektrische lading opnemen dan een condensator van 1 microfarad.
De capaciteit van condensators
De capaciteit van een condensator wordt met het F-teken van farad aangegeven, bijv. 10µF. Condensators zijn normaal gesproken van een opdruk met een getal (de waarde van de capaciteit en maximale spanning) of een kleurcode voorzien.
De kleurcode van condensators
Ingeval er een kleurcode wordt gebruikt: de eerste twee ringen bepalen het getal, de derde ring de vermenigvuldigingsfactor in picofarads (of hoeveel nullen komen achter het getal).
De vierde ring is eventueel aanwezig om de tolerantie van de waarde aan te geven en de vijfde band de maximaal toegelaten spanning.
Zie de tabel.
De capaciteit van de condensator uit het voorbeeld hierboven is: (groen/blauw/rood 56 met twee nullen erbij) is 5.600 pF. tolerantie is (zwart) 20% en de maximaal toegelaten werkspanning is (rood) 250 volt! Lees verder → Bericht ID 5829
Elektrische stroom is het transport van elektrische lading. In een elektrisch netwerk vindt dit transport voornamelijk plaats door de beweging van elektronen door geleiders en halfgeleiders onder invloed van een potentiaalverschil. Ook de beweging van ionen in een elektrolyt of een plasma veroorzaken een elektrische stroom. In al deze gevallen vindt het ladingstransport plaats door de verplaatsing van ladingdragers. Daarnaast ontstaat ook een elektrische stroom als verandering van de elektrische flux, zoals tussen de platen van een condensator gedurende het laden en ontladen, zonder dat zich ladingsdragers verplaatsen.
De sterkte van elektrische stroom wordt gemeten in ampère (A), als de hoeveelheid per tijdseenheid verplaatste lading, en wel in coulomb (C) per seconde (s): 1 A = 1 C/s.
In verdunde gassen, elektrolytische oplossingen en gesmolten elektrolyten verplaatsen positieve en negatieve ionen zich in tegengestelde richtingen; in een metalen geleider bewegen de negatief geladen elektronen zich van de negatieve (elektronenoverschot) naar de positieve (elektronentekort) pool.
Richting en sterkte
Traditioneel wordt elektrische stroom uitgedrukt als de verplaatsing van positieve lading. Toen het bekend werd dat elektrische stroom doorgaans wordt veroorzaakt door elektronen die zich in tegengestelde richting verplaatsen, heeft men het elektron per definitie een negatieve lading toegekend. De oude definitie van stroomrichting bleef daardoor van kracht.
Elektrische stroomsterkte wordt doorgaans weergegeven met de letter (van intensiteit) en kan worden beschreven als verplaatsing van elektrische lading per tijdseenheid. Voor een stroom met constante sterkte is: Lees verder → Bericht ID 5829
Je wilt een multimeter kopen, maar wat is nu een goede multimeter voor jouw gebruik? In dit artikel daarom de belangrijkste punten waar je op moet letten om te kunnen beslissen welke multimeter je moet nemen.
Autorange of manual range?
Een multimeter met autorange, ofwel automatisch bereik, selecteerd automatisch de juiste range en geeft de waarde weer in de automatisch gekozen range op het beeldscherm. Bij een lage spanning geeft de display dus de meting in aan mV, bij een hogere spanning in V.
Een multimeter met manual range, ofwel handmatig bereik, moet je zelf de knop draaien om de juiste range te selecteren. Autorange is dus makkelijker in het gebruik. Als je veel gebruik zal maken van je multimeter, dan is een Autorange multimeter dus aan te raden.
Een multimeter is een zeer nuttig instrument als je serieus aan de gang wilt gaan met de elektronica hobby. Door middel van een meerkeuzeschakelaar kan de meter zo ingesteld worden dat deze weerstand, voltage of amperage meet. Sommige multimeters hebben zelfs instellingen waarmee diodes, transistors en frequenties kunnen worden gemeten.
Een multimeter heeft verder per meetonderwerp verschillende meetstanden waar binnen gemeten kan worden. Zo kan voltage zowel in wisselstroom (AC) en gelijkstroom (DC) worden gemeten.
Het kiezen van een multimeter
Een goedkope multimeter is prima geschikt voor algemeen gebruik bij je elektronica projecten. Een dergelijke digitale multimeter is de beste keus als eerste multimeter. Zelfs de goedkoopste multimeter is prima geschikt voor het testen van simpele projecten.
Er bestaan ook analoge multimeters. Deze hebben een wat ouderwets aanziende meter met wijzer. Als je een dergelijke meter koopt let er dan op dat deze een hoge sensitiviteit heeft van 20k/V of hoger bij het meten van DC voltages. Is dit lager dan is de meter niet geschikt voor fijne elektronica. De sensitiviteit staat meestal in een hoek van de meetschaal. Je kan de lagere AC waarden negeren want deze zijn niet zo belangrijk. De hogere DC waarde is de kritieke waarde. Kijk uit voor goedkopere analoge multimeters die verkocht worden voor metingen aan b.v. je auto. De gevoeligheid van dergelijke meters is te laag.
Hieronder beschrijven we de digitale en analoge multimeter nader. Lees verder → Bericht ID 5829