• Tag Archieven chuck
  • Headstock Spindle Chuck Fittings

    Zie ook: Meet de draad van een draaibank (Lathe Spindle Thread)

    This table is an attempt to assist in the selection of the correct headstock thread fitting to suit your lathe when you are choosing a chuck.  Please note that you MUST check all available documentation shipped with your lathe and make any necessary measurements before committing to a particular size fitting.  In most cases, exchanges can be made simply by returning the chuck mounting bush, avoiding excessive transport costs, but this is not always the case.  Always test the bush on the headstock before fitting it to the lathe.  Bushes can be difficult to remove once firmly fitted and damaged bushes cannot be replaced.  If you’re not sure, send an e-mail first and we’ll try to advise.  Note also that certain lathes are equipped with different mounting threads in different markets, whilst others have changed during the life of the lathe.

    The sizes marked in RED are considered non-standard and some difficulty may be experienced in getting certain types/brands of equipment to suit: please enquire.

    Imperial (inch) Headstock Threads

    Thread

    Ref.

    Lathes Using This Thread (but CHECK yours: threads may vary in different markets!!)

    3/4″ x 16 tpi

    T01

    All Record, all Coronet (except red Major);  Sears Roebuck Craftsman; Klein; Carbatec; APTC KWL37; Nu-Tool NWL37; Naerok 12073; Clarke CWL12C; Draper WTL12A & WTL100; Rexon WL6V; Sealey SM42
    3/4″ x 10 tpi

    T10

    James Inns Sherwood range; Rockwell Homecraft; Naerok WL1000; Sealey.
    7/8″ x 16 tpi

    T08

    Coronet Major (Maroon)
    1″ x 12 tpi

    T03

    Myford ML8; Turnstyler
    1″ x 12 tpi

    T03HD

    APTC H1000
    1″ x 10 tpi

    T12

    Harrison Jubilee; Arundel E5; Durden
    1″ x 8 tpi

    T04M

    APTC M900, M950, M1000, M330, M600 & Perform CCL and CCBL; Wivamac (DB800, DB801, DB1000, DB1200, ADB950 – all models, US option); Sorby (some markets), Delta
    1.1/8″ 12 tpi

    T20

    Myford ML7
    1.1/8″ 12 tpi

    T20M

    Myford Maestro (with lock screws)
    1.1/4″ x 8 tpi

    T23

    Woodfast M Series (US models);VicMarc VL series (US models);  Nova 3000 (US models); General 260
    1.1/2″ x 8 tpi

    T39

    1.1/2″ x 8 tpi

    T06

    Powermatic
    1.1/2″ x 6 tpi

    T02

    Axminster NV28-40; Harrison/Startrite/GLCo Graduate; Wadkin Bursgreen 6″ BL 150 Lungrens; Tanner FS100 some Woodfast models(!)
    1.1/2″ x 6 tpi

    T02P

    Poolewood PW28-40 (Old type)
    5/8″ Plain Bore

    T05

    Shopsmith; Multico Supershop
    Metric (metrisch) millimetre (millimeters) Headstock Threads

    Thread

    Ref.

    Lathes Using This Thread (but CHECK yours: threads may vary in different markets!!)

    18 mm x 2.5 mm

    n/a

     Elu only – enquire.
    20 mm x 1.5mm

    T33

    Electro HDM800 & HDM1000; Multico, Poolewood
    20 mm x 2 mm

    T29

    Tyme Cub (’83 on) & Little Gem
    24 mm x 3 mm

    T21

    Luna; Arundel M230; Merlin K150/450/600
    25 mm x 2 mm

    T30

    Tyme Avon (’83 on) & Classic, Tanner SD165; Selbix Springwood; Sorby (some markets); Cotech
    30mm x 1.5mm

    T34

    Alko HDM850
    M30 x 3.5 mm

    T13

    Woodfast C Series, Arundel M300
    M30 x 3.5 mm

    T37

    Teknatool; Nova 3000 & TL1500 (Europe); VicMarc VL100 (Europe); MiniMax T124
    M33 x 3.5 mm

    T38

    Wivamac (DB800, DB801, DB1000, DB1200, ADB950 – all models); Kity;Scheppach DMV200 & DMT180; Sorby (some markets); OneWay 2036/2436/2016/2416;  Konig; Hager; Hegner; Flott BD180; Emco DB5, VicMarc VL200 & 300 (not US)
    M33 x 3.5 mm

    T38W

    APTC Woodfast
    M33 x 3.5 mm

    T38H

    Hapfo ONLY
    M33 x 3.5 mm

    T38V

    VicMarc – special fitting
    M33 x 3.5 mm

    T38PRO

    Axminster 4224 Professional
    Bayonet Headstock Mountings

    Thread

    Ref.

    Lathes Using This Mounting

    Special Fitting

    VB36

    VB Manufacturing (Hegner UK) VB36

  • Meet de draad van een draaibank (Lathe Spindle Thread)

    Zie ook: Headstock Spindle Chuck Fittings

    Om accessoires (zoals een boorkop of voorplaat) op uw draaibank te passen, moet u de draadmaat van de spil van de kop weten. Houd er rekening mee dat deze kunnen worden vervaardigd in imperiale (inch) of metrische (millimeter) maten.

    1. Met behulp van een paar schuifmaten (bij voorkeur digitale schuifmaten) meet u de draaddiameter over de maximale diameter van de schroefdraden, van piek tot piek. Dit zal normaal gesproken marginaal onder de nominale draadgrootte liggen als gevolg van slijtage en essentiële spelingen en productietoleranties.

    2. Meet de spoed van de schroefdraad (de afstand tussen opeenvolgende draadpieken).

    2.1. Voor een imperiale (inch) draad wordt dit gemeten in ‘draden per inch’. Als de draad een imperiale maat heeft, plaatst u het nulpunt van een nauwkeurige meetlat, aangegeven in inches, op de top van een draad dicht bij de kop. Tel dit punt als ‘nul’ en tel hoeveel pieken je nog meer tegenkomt totdat je het punt van een halve inch op je regel bereikt. (NB: dit zal bijna altijd een geheel getal zijn – zeer weinig draden hebben een oneven aantal ‘draden per inch’ – hoewel negen zeer af en toe voorkomt). Neem het aantal draden dat je hebt geteld en verdubbel dit aantal: de waarde die je berekent is het aantal ‘draden per inch’. (Je hebt het aantal draden in een halve inch geteld, dus het aantal in een volledige inch is het dubbele van het aantal in een halve inch!). Typische spoeden op draaibankspindels zijn: 6tpi; 8 tpi; (zelden, 9tpi); 10 tpi; 12 tpi en 16 tpi.

    2.2. Voor een metrische draad (millimeter) is de aanpak vergelijkbaar, behalve dat u een regel gebruikt met metrische schaalmarkeringen. Voor een metrische draad moeten we de grootte van een enkele draadspoed vinden, gemeten in millimeters. Het meten van een enkele steek is bij de meeste draden bijna onmogelijk, dus het is gemakkelijker voor ons om te beginnen met het einde van de regel op één draadpiek (ons nulpunt) en dan de draden te blijven tellen totdat we een ander punt hebben waar de draadpiek precies samenvalt met nog een markering op onze regel. Meestal zal het tellen van vier, vijf of tien threads het leven gemakkelijker maken, als dat past bij waar uw regel is geplaatst. Om de steek te vinden, deelt u de afstand die u hebt gemeten tussen de door u gekozen begin- en einddraadpiek door het aantal draden dat u hebt geteld. Dus als we bijvoorbeeld 4 draden tellen in een ruimte van 14 millimeter, is de steek gelijk aan 14 gedeeld door 4 = 3,5: de steek is in dit geval 3,5 mm. Typische steekwaarden op draaibankspindels zijn: 1,5 mm; 2 mm; 2,5 mm; 3 mm en 3,5 mm.

    Als uw draaibank 10 jaar of minder oud is en wordt geleverd voor de Britse markt, zal deze vrijwel zeker een van deze 4 maten zijn:
    3/4” x16tpi; 1” x 8tpi; 1,1/4″x8tpi en M33 x 3,5 mm

    Oudere draaibanken zouden een veel grotere variëteit kunnen hebben, net als die welke voor verkoop op andere markten worden vervaardigd. Als u het ‘makersplaatje’ op uw draaibank kunt vinden en ons het merk en model van de draaibank kunt doorgeven, kunnen wij u waarschijnlijk naar de meest waarschijnlijke spilgrootte voor uw draaibank leiden.
    Andere, minder vaak voorkomende schroefdraadmaten zijn: 3/4” x 10tpi; M18 x 2,5 mm; 1” x 10 tpi; 1” x 12 tpi; M25 x 2 mm; 1,1/8” x 12 tpi; M30 x 3,5 mm; 1,1/2” x 6tpi – maar er zijn er nog veel meer!

    Sommige spindels van draaibanken hebben een ‘gewoon’ spilgedeelte achter het gedeelte met schroefdraad – dit staat bekend als het ‘register’. Het bestaan ​​(of niet) ervan en de afmetingen ervan kunnen ook belangrijk zijn. Als uw draaibank een register had, kunnen de afmetingen van dat kenmerk ook belangrijk zijn om te zorgen voor een juiste pasvorm voor de spildraad. Raadpleeg het volgende diagram, dat een typische spilneus toont, inclusief register. Als u elk van de genoemde afmetingen kunt doorgeven, hebben wij een grotere kans om de juiste apparatuur te leveren.

    De verschillende kenmerken die u moet meten zijn:
    T: de totale diameter van het schroefdraadgedeelte van de spil, zoals beschreven in paragraaf 1 hierboven;
    P: de spoed zoals uitgelegd in paragraaf 2 hierboven;
    L: de totale lengte van de spil, inclusief eventuele registers, gemeten vanaf de achterkant van het register – of het equivalent daarvan als er geen register is;
    D: de diameter van het register (de maximale diameter waarbij eventuele vergrendelingsgroeven rond het register buiten beschouwing worden gelaten); en tenslotte,
    S: de diepte (lengte) van het register.

    Opmeten draad van een draaibank
    Opmeten draad van een draaibank

  • Metaaldraaibank

    We geven er een draai aan…
    Draaien is een verspaningstechniek, waarbij het metaal op een draaibank wordt bewerkt. Het materiaal draait rond en voert de snijbeweging uit, doordat de beitel in een bepaalde richting beweegt. Er zijn allerlei vormen van draaien, zoals langsdraaien, dwarsdraaien, steken, profieldraaien, conusdraaien en kopieerdraaien.

    Algemeen

    Technische fische onderdelen Chiu - Ting CT-918 AM draaibank
    Technische fische onderdelen Chiu – Ting CT-918 AM draaibank

    Een metaaldraaibank is een machine waarmee metalen of kunststoffen werkstukken worden gedraaid/gemaakt. De draaibank bestaat uit een gietijzeren gestel of geraamte. Door een elektromotor wordt via een v-snaar de klauwplaat, welke op de hoofdas wordt bevestigd, aangedreven.

    De draaibank bestaat verder uit een support waarin de beitels voor het draaiwerk worden vastgezet. Dit beitelsupport kan zowel handmatig als automatisch over een zwaluwstaartbed worden voortbewogen. Aan het andere uiteinde van de draaibank zit de “losse kop” waarin een vast of meedraaiend center kan worden geplaatst. Ook een boorkop of een boor met grotere diameter kunnen hier worden vastgeklemd.

    Op een metaaldraaibank kan behalve in- en uitwendig draaiwerk ook schroefdraad gesneden worden. Door verschillende tandwielverhoudingen te gebruiken kunnen diverse soorten schroefdraad worden gesneden. De meest voorkomende schroefdraad hier op het Europese vasteland is de Metrische draad. Er is ook Engelse (schroef)draad, Whitworth genoemd, waarvan de spoed (hier het aantal gangen per inch) en de tophoek de voornaamste verschilpunten tussen de WW en de Metrische schroefdraad zijn.

    Bouw

    Kenmerkend voor een draaibank is dat bij een draaibank het snijgereedschap (draaibeitel) stilstaat. Meestal wordt een te bewerken onderdeel ingeklemd in een klauwplaat die bevestigd is aan een horizontale as die het werkstuk ronddraait.

    De draaibank bestaat veelal uit een gietijzeren constructie, het deel dat op de grond staat heet de voet en daarbovenop staat het draaibankbed. Bij grotere draaibanken zijn voet en bed uit twee delen gemaakt, bij bijvoorbeeld een tafeldraaibank bestaan de voet en het bed uit een enkel stuk gietijzer.

    De aandrijving gebeurt meestal met een elektromotor via een overbrengingssysteem bestaande uit V-riemen en/of tandwielen met een keuze uit verschillende toerentallen. De aandrijving kan ook uitgevoerd worden een frequentieregelaar die zorgt voor verschillende aandrijfsnelheden van de elektromotor.

    Geschiedenis

    De draaibank is een zeer oude machine die al gebruikt werd in Assyrie en het klassieke Griekenland. De oorsprong van het draaien vinden we rond 1300 v.Chr. toen de Grieken een tweepersoonshoutdraaibank ontwikkelden. Een persoon draaide het werkstuk met een touw terwijl een andere persoon een scherp voorwerp gebruikte om vormen in het hout te snijden. In het Romeinse rijk werd een draaiboog (soort strijkstok) toegevoegd. In de middeleeuwen werd het handdraaien vervangen door een pedaal zodat de handen vrijkwamen om de verschillende beitels vast te kunnen houden. Dit type draaibank is tot in het begin van de 20e eeuw veel gebruikt en nog in gebruik in diverse ontwikkelingslanden.

    De eerste industriële metaaldraaibank werd door de Nederlander Jan Verbruggen, meestergieter in de zware geschutgieterij in Den Haag, in 1757 ontworpen en in gebruik genomen. In 1770 werd hij benoemd tot meestergieter in de geschutgieterij in het Royal Arsenal in Woolwich. Hier installeerde hij eenzelfde horizontale, door paarden aangedreven draaibank waarvan een set van 50 gedetailleerde camera-obscura-tekeningen bewaard zijn gebleven (zie bijgevoegd voorbeeld). Henry Maudslay, die later onder andere het automatisch draaien van schroefdraden op de draaibank uitvond, werkte ook in de werkplaats van Jan Verbruggen in Woolwich.

    Soorten draaibanken

    In de conventionele draaibanken kunnen diverse soorten uitvoeringen worden onderscheiden, met of zonder computeraansturing, te weten:

    1. Centerdraaibank: wordt gebruikt voor stukken met een centerpunt aan beide kopzijden en geen mogelijkheid tot klemmen op het stuk.
    2. Universele draaibank: de meest bekende vorm, wordt veelal gebruikt voor stuk- en herstellingswerken. Door demontage van de klauwplaat kan er een centerdraaibank van gemaakt worden doordat er in de spil een conus zit.
    3. Kopdraaibank: een universele draaibank voor stukken met een diameter tot soms wel 3,5 meter. Er ontbreekt vaak wel de losse kop op deze soort, nadeel is dat het opspannen van het stuk veel tijd kost en dat de hoofdspil sterk op buigen wordt belast.
    4. Carrouseldraaibank: een verticaal opgestelde kopdraaibank, met de voordelen van de kopdraaibank maar geen belasting op buigen van de spil. Sommige versies hebben ook de mogelijkheid om met meerdere beitels tegelijk te kunnen werken.
    5. Kopieerdraaibank: een draaibank gebruikt voor het maken van series gelijke stukken. Hierbij loopt een taster over een mal en de vorm van de mal wordt aan een beitel doorgegeven en zo op een werkstuk gedraaid. Deze is vervangen door de computer numerical control (CNC) machines.
    6. Revolverkopdraaibank: gebruikt voor het vervaardigen van series gelijkvormige stukken. Principieel is dit een universele draaibank, maar met een beitelhouder voor soms wel 8 gereedschappen die men kan ronddraaien (zoals bij een trommelrevolver).

    Instellingen

    Opbouw van een oudere draaibank uit 1911. Met a = bed, b = geleiding (met dwarsslede en beitelhouder), c = kop, d = terugversnelling (met overbrenging naar ondergelegen spindel) e = kegel voor riemaandrijving van een externe voeding, f = frontpaneel gemonteerd op spindel, g = losse kop. h = spindel.
    Opbouw van een oudere draaibank uit 1911. Met a = bed, b = geleiding (met dwarsslede en beitelhouder), c = kop, d = terugversnelling (met overbrenging naar ondergelegen spindel) e = kegel voor riemaandrijving van een externe voeding, f = frontpaneel gemonteerd op spindel, g = losse kop. h = spindel.

    Het toerental wordt afgestemd op het te bewerken materiaal (de specifieke snijsnelheid, die voor elk materiaal anders is) en de diameter van het te draaien werkstuk.

    Hierbij gebruikt men de volgende formule:

    n = ( V c ∗ 1000 ) / ( π . d ) , {\displaystyle n=(V_{c}*1000)/(\pi .d),}

    Waarbij:

    • n: het toerental, in toeren/min
    • Vc: de snijsnelheid, in m/min
    • d: de diameter van het werkstuk, in mm

    Bij het gebruik van een industriële draaibank, waarbij door middel van hendels de toerentallen en voedingen worden ingesteld, is het volgende zeer belangrijk: het toerental van de hoofdspil mag slechts bij stilstand veranderd worden en de voedingen tijdens werking van de draaibank. Het kan dus soms gebeuren dat de tandwielen niet goed in elkaar grijpen bij het wisselen van hoofdspiltoerental, het volstaat hierbij om de klauwplaat met de hand te bewegen, men zal dan voelen dat de hendels op hun juiste plaats vallen als men de klauwplaat een beetje verdraait. Er bestaan ook systemen voor traploze snelheidsregeling bij conventionele machines in de vorm van frequentieomzetters.

    Losse kop en bed

    Meedraaiend center (boven), vast center (onder)
    Meedraaiend center (boven), vast center (onder)

    Rechts bevindt zich de losse kop, hierin kan een vast of meedraaiend center worden geplaatst, zodat het werkstuk aan beide uiteinden ondersteund wordt. Ook bestaat de mogelijkheid om er een boorkop of een grotere boor rechtstreeks in te zetten.

    De losse kop kan verplaatst worden langs het bed. Het bed bestaat uit twee geleiders die heel zuiver zijn geslepen. In het bed is een trapeziumvormige rand geslepen, zodat bij slijtage op het bed er geen zijdelingse speling ontstaat maar enkel de support naar onder toe zakt (een zeer kleine verplaatsing overigens).

    Bij het bed zijn er 2 keuzemogelijkheden: inductiegehard of niet. Inductiegehard is duurder maar op termijn heeft dit enkel voordelen doordat het bed minder vatbaar is voor beschadiging van spanen of slijtage door gebruik. De beitelwagen, ook weleens langsslede of support genoemd, kan over het bed verplaatst worden (voeding). Dit support kan zowel handmatig alsook automatisch door middel van een nauwkeurige schroefdraadstang worden voortbewogen, afhankelijk van de grootte van de draaibank kan dit trapeziumdraad of zaagtanddraad zijn, beide geschikt voor het opnemen van zware axiale belastingen op deze as. Hierbij moet er op gelet worden dat bij het gebruik van automatische voeding men de slede niet heeft vastgezet met de blokkeerschroeven, dit kan zware schade veroorzaken aan het bed.

    Dwarsslede en beitelhouder

    De dwarsslede is de tweede van een combinatie van drie sleden, haaks ten opzichte van elkaar opgesteld. Ook deze kan meestal met automatische voeding worden bewogen. Hierop staat dan nog een beitelslede waarop een beitelhouder geplaatst is waarin men, afhankelijk van het model, één of meerdere beitels kan plaatsen. Hoe deze beitels worden vastgehouden in de beitelhouder verschilt, het belangrijkste is dat de beitelpunt op centerhoogte staat in verband met snijkrachten en afwerking van het stuk.

    Er zijn verschillende soorten beitelhouders die het mogelijk maken snel beitels te wisselen voor verschillende toepassingen. Een voorbeeld is meerdere beitels in een houder. Deze systemen zijn in hoogte verstelbaar waardoor centerhoogte gehaald kan worden.