• Tag Archieven vermogen
  • Gelijk en wisselstroom

    Wisselspanning en gelijkspanning (gelijkstroom)

    Begrippen Toepassingen
    Van AC DC Meten aan DC
    Steeds meer DC Verschillen AC DC
    USB-C Transport AC DC
    DC in gebouwen Wet- en regelgeving

    Hernieuwbare energie en het milieu worden steeds belangrijker. De meeste elektrische energiebronnen produceren gelijkspanning (DC). De meest gebruikelijke vormen van opslag van elektrische energie werken ook met DC. En de meeste apparaten werken ook op gelijkspanning. DC installaties wijken op belangrijke punten af van AC-installaties (wisselspanning-installaties). Het ontwerpen, installeren en beheren van DC-installaties is nog geen gemeengoed.

    Begrippen

    Spanning, stroom, weerstand en vermogen

    Stroom loopt pas door een schakeling als er sprake is van spanning. Spanning komt pas tot stand wanneer er een weerstand is gevormd. Daarnaast moet stroom altijd in een kring lopen.
    Het filmpje laat zien waarom een stroom altijd in een kring moet lopen en wat het verschil is tussen een serie- en parallel schakeling.

    De verhouding tussen spanning stroom en weerstand is te berekenen d.m.v. de volgende formule: U (spanning) = I (stroom) x R (weerstand). Dit wordt ook wel de wet van Ohm genoemd. Daarnaast heb je nog het vermogen. Dit is een afgeleid deel van de stroom en spanning. Vermenigvuldig de spanning met stroom en je krijgt het vermogen in Watt. Lees verder  Bericht ID 4255


  • Raspberry PI problemen

    Hangen of vastlopen:
    Bij regelmatig vastlopen na aansluiten USB apparaten kijk dan eens of de voeding wel voldoende stroom kan leveren, alleen Raspberry PI heeft al 1A nodig, met een webcam of P1 voor slimme meter zou ik voor 1,5A tot 2,5A gaan afhankelijk van de verdere wensen en aansluitingen.


    Verlies netwerkverbinding
    Ook die heeft vaak te maken met te weinig vermogen van de voeding.


    Lees verder  Bericht ID 4255


  • Versterker afstellen tutorial

    Dit artikel is geschreven om mensen te helpen bij het afstellen van de ‘Gain’ en de ‘Crossover’ op hun versterkers.
    Voordat we beginnen met het afstellen van de instellingen, gaan we eerst de basis begrippen doornemen en betekenissen achter hun afstellingen.

    Afkortingen gebruikt in dit artikel:

    EQ = Equaliser
    HP = Highpass
    HU = Headunit
    LP = Lowpass
    RMS = Root Mean Square
    W = Watts

    Wat is een Gain afstelling?

    colandino.nl - Wat is een Gain afstelling?
    Wat is een Gain afstelling?

    De Gain is GEEN volume afstelling.

    Het verhogen van de Gain geeft geen hoger ‘vol vermogen’ output. Als een versterker een maximum levert van 100wrms per kanaal, zal de Gain niet meer dan dit leveren.
    De Gain kan beter gezien worden als een ‘gevoeligheid’ meting: hoe hoger de Gain, hoe gevoeliger de versterker is voor het signaal wat deze ontvangt.
    Als voorbeeld:
    stel er zijn 3 Gain afstellingen: A, B en C. A is laag, B is medium en C is hoog. De laagst mogelijke instelling zou dan zijn als deze volledig naar links is gedraaid en de hoogt mogelijke instelling is volledig naar rechts (als de Gain een knop of potmeter is).
    Nou zeg dat de HU een signaal levert van 2V via de pre-outs en RCA kabels. Met de Gain op B, de versterker kan 100wrms per kanaal leveren. Als de Gain nu afgesteld word via A, is de versterker minder gevoelig; om de 100wrms te leveren als voorheen, moet de HU nu meer voltage leveren, zeg 3V. Als de Gain via C word afgesteld, word de versterker meer gevoeliger; er is nu nog maar 0.5V nodig om 100wrms te leveren.
    Het doel van de Gain instelling is om het pre-out signaal voltage van de HU gelijk te krijgen met de versterker. Een HU met een hoger voltage signaal vereist een lagere Gain afstelling; als de HU een lager voltage signaal levert, moet de versterker meer gevoeliger zijn om aan hetzelfde wrms signaal te komen.

    Wat betekenen de voltage markeringen op de Gain afstelling?
    Sommige Gain knoppen hebben markeringen met voltage om te gebruiken als richtlijn.

    Deze voltage markeringen geven je een suggestie welk RCA input voltage nodig is om de versterker op vol vermogen te laten werken.

    Je zal zien dat met een hoge Gain afstelling, de markering 0.5V kan worden afgelezen; dit is logisch omdat de versterker gevoeliger moet zijn om te reageren op een laag voltage signaal om alsnog volledig vermogen te kunnen leveren.

    Dit geld ook andersom: met een lage Gain aftelling kan deze een afstelling hebben van 4V; met een dergelijk hoog input voltage, dient de versterker minder gevoelig zijn om alsnog volledig vermogen te leveren.

    Hoeveel voltage levert mijn HU via de RCA pre-out?
    Als je geen professionele apparatuur hebt zoals een oscilloscoop, kan je niet weten hoeveel voltage de HU levert.

    Het voltage waarmee geadverteerd word is alleen onder speciale omstandigheden: normaal is dit bij het afspelen van een constant signaal zoals een test toon op een vaste frequentie.

    Dit is natuurlijk anders dan het afspelen van muziek. Muziek is erg dynamisch, constant wisselend van hard naar zacht.
    Het is belangrijk om te weten dat een RCA pre-out signaal lager is bij het afspelen van muziek dan bij een test toon.

    Daarom, ook al heeft een HU 4V pre-outs, zal bij het afspelen van muziek deze misschien nooit boven de 1 tot 1,3V uitkomen.

    Het kan wel pieken naar de 4V, maar het zal dit nooit als een constant vermogen vasthouden.

    Ook zullen deze voltage waardes alleen bereikt worden als het HU volume volledig open gedraaid is.

    Als het volume lager is gezet, zoals normaal is, zal het signaal voltage uiteraard lager zijn.

    Het probleem waar we tegen aan lopen is dat de Gain afstelling op een versterker veel hoger moet zijn dan in eerst instantie gedacht.

    Verwacht een 3 tot 4 keer hogere afstelling dan het werkelijke voltage.

    Als voorbeeld: een HU geeft aan dat deze een 4V pre-out signaal uitgeeft, maar dit zal gemiddeld niet hoger zijn dan 1 a 1,3V als er muziek word afgespeeld op vol volume.

    Daarentegen zal de Gain afstelling wel hetzelfde blijven: als de Gain om een 1,3V markering word gezet, zal de versterker zijn volledig vermogen leveren als de HU 1,3V levert.

    Waarom de Gain goed afstellen?
    Er zijn verschillende redenen om de Gain goed af te stellen:
    1. Hoe groter het bereik waarover je het volume kan gebruiken van de HU, des te beter is de afstelling die je hebt. Het heeft geen zin om de versterker vol open te hebben als het volume iets open staat en iedere stap een groot volume verschil geeft. Daarom is het beter om vol volume te hebben als de volume afstelling op de HU vol open staat.

    2. Om overbelaste speakers te voorkomen. Iedere speaker heeft een belastbaar limiet; als er continue teveel stroom word geleverd aan de speaker, kan het gebeuren dat de voice coil oververhit raakt en permanent beschadigt raakt.

    Gain afstelling zorgt ervoor dat de stroom die geleverd word binnen zijn beperkingen blijft.
    Het voorkomen van het ‘clippen’ van de versterker.

    Clippen gebeurt als een versterker word belast voorbij zijn eigen grens; dit limiet is het maximum aan vermogen dat de versterker kan produceren.

    Voorbij dit punt zal het output signaal verstoord raken, en word ook wel ‘clippen’ genoemd; het is goed hoorbaar en makkelijk te voorkomen.

    Als de Gain te hoog word gezet, zal de versterker zijn maximum kracht bereiken terwijl de volume op de HU niet eens volledig open staat.

    Als dan het volume hoger word gezet zal de versterker voorbij dit punt komen en zal deze gaan clippen. Door de Gain lager af te stellen, zal de versterker nooit gaan clippen ook al word de volume vol open gezet. Vergeet niet dat clippen niet direct betekent dat de speakers overbelast worden; daarom is het niet altijd gevaarlijk voor de speakers (komt later).

    4. Om een mooi gebalanceerd systeem te krijgen tussen de voor- en achter speakers, en de subwoofer, zal hun bijbehorende afstelling goed op elkaar afgesteld moeten worden. De Gain kan hier goed voor gebruikt worden.

    Wat gebeurt er als de Gain te laag word ingesteld?
    Als de Gain te laag word gezet, zal de versterker niet gevoelig genoeg zijn om zijn volledig vermogen te bereiken.

    Bijvoorbeeld, als de Gain word afgesteld waarbij de versterker een input signaal van 3V nodig heeft om vol open te staan, maar de HU levert maar 2V op vol volume, bereikt de versterker nooit zijn maximum vermogen. Hiermee maak je niet volledig gebruik van je versterker.

    Houd er wel rekening mee dat dit wel nodig kan zijn om een beter gebalanceerd systeem te krijgen, en belangrijker, om te voorkomen dat de speakers en de subwoofer overbelast raken. Daarom, een lage Gain afstelling kan worden gebruikt om de power output te beperken vanaf de versterker.

    Wat gebeurt er als de Gain te hoog word ingesteld?
    Dit is boven al besproken. De problemen houden het risico in bij het overbelasten van de speakers en veroorzaakt clippen.

    Wat is vertekening en overbelasting van de speakers en subwoofer?
    In de audio wereld, vertekening is een muziek signaal (elektrisch of akoestisch) dat minder dan 100% gelijk is aan het origineel.

    Waarbij een CD het origineel is, kan vertekening optreden als het signaal van digitaal naar analoog word geconverteerd, wanneer het door de voorversterker word gestuurd van de HU, via de RCA kabels naar de versterker, en dan weer naar de speakers, en het signaal bij de speakers weer word geproduceerd.

    Dit is soms hoorbaar en dient altijd gezien te worden als ‘slecht’, niet alleen voor je oren maar ook voor je componenten.

    Belangrijke vormen van vertekening om in de gaten te houden:
    1. Teveel vervorming van het signaal dat gestuurd word naar de conen van de speakers en de subwoofers waarmee deze voorbij hun fysieke limiet komen. Dit gebeurd vooral bij kleinere speakers die deel uitmaken van de frontspeakers, welke teveel bass doorgestuurd krijgen, vooral als het signaal op full-range word doorgestuurd. Door een HP filter te gebruiken, word de bass weg gefilterd, en zal dit de stroom afhandeling door de speaker zeker verbeteren en voorkomt vervorming.
    2. Het clippen van de versterker. Zoals hierboven besproken, clippen gebeurd als de versterker voorbij zijn maximum word gebracht om vol vermogen te leveren en het signaal vervormd raakt.

    Deze overstap is plots en ruw, maar sommige versterkers hebben last van zachte clipping, welke een stuk minder hoorbaar is. Daarnaast hebben sommige versterkers een clipping waarschuwing systeem, waarbij er een LED gaat branden.
    Het overbelasten van de speakers gebeurt wanneer er teveel vervorming optreedt of de stroom die word aangeleverd meer is dan de speaker aankan.

    Bij iedere speaker en subwoofer word aangegeven wat hun maximum is, aangegeven door de fabrikant, en word meestal ook aangegeven op de speaker zelf.

    Kijk altijd naar de RMS waarden van een speaker.

    Het is mogelijk dat er teveel vervorming optreedt zonder dat het maximum is bereikt.

    Bijvoorbeeld, een 6” speaker kan een maximum hebben van 50WRMS, maar als er een signaal word geleverd met subbass kan deze vervormen met alleen een doorvoer van 30WRMS.

    Normaal zal een speaker of subwoofer hoorbaar vervormen als deze teveel gevoed word.

    Dit is een waarschuwing om de stroom te verlagen of je riskeert permanente beschadiging!

    Clippen kan teveel vermogen veroorzaken en is daarvoor gevaarlijk voor de speakers.

    Het is een alledaagse reden voor opgeblazen voice coils.

    Een geclipped signaal is veel krachtiger dan een goed signaal, waarbij snel al het dubbele aan vermogen word bereikt dan het goede signaal.

    Het is vanwege dit snelle overschakelen wat bij mensen opvalt.

    Het goed afstellen van de Gain kan dit voorkomen!

    Clippen is niet perse gevaarlijk voor een speaker.

    Het is het eigenlijke vermogen van het signaal dat dit kan veroorzaken. Bijvoorbeeld, een versterker levert alleen 100WRMS vermogen, daarboven gaat hij clippen.

    Als hij gaat clippen kan hij een vermogen bereiken van 200WRMS. Als nu blijkt dat de subwoofer een maximum vermogen heeft van 300WRMS, zal deze niet vervormen of oververhitten.

    Daarom zal de subwoofer het signaal gewoon afspelen op 200WRMS de gehele tijd, het klinkt alleen erg slecht en de versterker kan oververhitten!

    Begrijp dus goed dat clippen een sein is dat de versterker voorbij zijn vermogen word gebracht; het begin van clippen veroorzaakt een snelle verhoging van het vermogen output, dan al niet vervormd; clippen betekend niet direct dat de speaker of subwoofer word overbelast.

    Hoe gebruik ik het beste een cross-over filter?
    Crossover filters worden herkend door de frequentie waar ze op zijn ingesteld en hoe goed deze het signaal filtert (slope ofwel curve).

    Bijna alle versterkers beschikken over een cross-over filter en zijn het meest variabel.

    Dit betekent dat je de frequentie kan afstellen vanaf waar een filter effect gaat hebben.

    De meeste slopes zijn vastgezet, normaal gezien op 12dB/oct.

    Je dient het filter af te stellen op de speakers en de subwoofer, en ook om een goede vergelijking te krijgen tussen voor, achter en de subwoofer.

    Als een kleine speaker teveel bass doorgestuurd krijgt, zal deze vroegtijdig verstoren door teveel vervorming, waardoor zijn vermogen word verlaagd; dit heeft invloed op hoe hard je het systeem kan zetten.

    De keuze van frequentie waarop de HP filter word afgesteld is een compromis; waarbij het goed is om meer midbass te hebben (70 – 150Hz bereik) op de voorspeakers, teveel vragen van de speakers kan hun vermogen verminderen.

    Dit kan ook hun geluid ‘vervuilen’ omdat ze teveel moeten werken om het helderheid van de hogere frequenties te waarborgen tijdens het afspelen van de midbass.

    Door het HP filter iets hoger te zetten zal het vermogen verbeteren terwijl je iets inlevert op de midbass.

    Het afstellen van de LP filter is ook een compromis.

    De subwoofer kan heel goed de midbass weergeven zelfs zo hoog als 200Hz.

    Echter, deze hoge frequenties boven de 100Hz zijn ‘wegwijzers’ voor je oren: hiermee kunnen ze detecteren van waar de frequenties vanaf komen.

    Doordat je oren de midbass detecteren vanuit de achterkant van je auto beïnvloedt dit ongunstig het geluidseffect.

    Je moet ervoor gaan om het zo te lijken alsof het geluid van voren afkomt.

    Subbass frequenties (flink beneden de 100Hz) zijn niet directioneel; daarom is het goed om een subwoofer achterin te hebben omdat onze oren door deze frequenties de plaatsing van de subwoofer dit niet kan bepalen.

    Als je van een subwoofer zijn locatie kan ‘horen’, komt dit doordat de subwoofer teveel hoge frequenties afspeelt of dit komt door trillingen.

    De beste afstelling voor je installatie word vastgesteld door veel dingen, zo ook de kwaliteit van de speakers en hun installatie, de akoestiek in een auto, en je eigen smaak.

    Echter, als een snelle afstelling, kan de HP worden afgesteld op basis van de grootte van de speakers:
    – 6 tot 7” speakers: 707 tot 100Hz met 12dB/oct cross-over.
    – 5,25” speakers: 100 tot 150Hz.
    – 4”speakers: 150 tot 250Hz.
    Een steiler ingesteld filter zal de bass sneller verwijderen.

    Hierdoor kan je het filter lager instellen zonder flink lagere frequenties uit te sturen.

    Veel mensen adviseren om de LP dicht bij dat van de HP in te stellen van de voorspeakers.

    Filters zijn geen grens: ze zullen niet ineens de frequenties onder of boven hun afstelling uitsluiten. Vanwege dit zal enige gaping tussen filters geen gat achterlaten.

    Een voorbeeld van gaping is een HP filter afgesteld op 90Hz en een LP filter afgesteld op 70Hz. Gaping is geliefd bij enthousiastelingen voor een beter resultaat. Echter, veel systemen klinken het beste met gelijkwaardige instellingen of daadwerkelijk overlappende cross-overs waarbij de subwoofer en de voorspeakers meer frequenties delen rond het overlappende bereik.

    Afstellen van de Gain
    Hopelijk ben je nu gewapend met een basis kennis om je te helpen bij het afstellen van je systeem voor een goed resultaat.

    Het volgende is een advies voor de stappen die nodig zijn voor het correct afstellen van de Gain en de cross-over instellingen.
    Doe dit afstellen in een omgeving waar hard geluid geen verstoring is.

    Ook bescherm je eigen oren met oordoppen om gehoorbeschadiging te voorkomen.
    In het algemeen, stel eerst de voorspeakers af, dan de achterspeakers en als laatste de subwoofer. Stel daarna het balans tussen voor, achter en de sub in, waarbij het nodig kan zijn om de Gain lager in te stellen op sommige versterkers (bvb: de subwoofer versterker).

    Stappen om de Gain in te stellen:
    1. Gebruik muziek dat goed opgenomen is en waar je bekend mee bent, waarmee het volledige frequentie bereik word bereikt van subbass tot treble.

    2. Start met alleen de voorspeaker kanalen: ontkoppel alle andere door de RCA kabels los te koppelen of ze uit te schakelen op je HU (als dit mogelijk is). Als je een 4 kanaal versterker gebruikt om 2 kanalen te bruggen, dien je de Gain af te stellen voor ieder kanaal apart. Dit doe je makkelijker door gebruik te maken van de balans functie om op één kant te concentreren per keer.

    3. Zet de Gain zo laag mogelijk in.

    4. Stel het HP filter hoger in dan nodig (bv: 150Hz voor 6”)

    5. Schakel de LOUD optie uit en zet de EQ niet in (of op een vlak bereik)

    6. Speel nu de cd en verhoog het volume zo ver mogelijk naar boven zonder vervorming
    Sommige HU’s geven de mogelijkheid voor 100% volume zonder vervorming via de RCA; andere maar tot 90%; stel het in net voor enige vervorming

    7. Begin de Gain langzaam te verhogen: ga door totdat je vervorming hoort. Enige hoorbare vervorming moet gezien worden als slecht, dus stel de Gain iets naar beneden af, net voordat vervorming optreed.

    8. Als laatste stel je de HP filter in: verlaag het tot je voorspeakers een voldoende bass geven zonder enige verlies van vermogen. Als nodig, verlaag je de cross-over instelling verder en verwacht hiermee een verlaagd vermogen wat nodig is om de Gain lager af te stellen. Dit kan wenselijk zijn voor sommige luisteraars welke niet willen dat het volume te hard is en meer midbass willen.

    Nu is de Gain en de HP filter voor de voorspeakers goed afgesteld. Ze zijn nu afgesteld op een niveau waarmee maximaal vermogen word gebruikt wanneer de HU volume vol open staat (of nog voordat het vervormd raakt).
    Volgende stap:

    9. herhaal bovenstaand voor de achterspeakers als nodig; ontkoppel wel de voorspeakers en de subwoofer.
    Volgende stap:

    10. begin met het afstellen van de subwoofer Gain en ontkoppel dan ook de voor en achterspeakers.

    11. Overweeg om de HU sublevel afstelling in te stellen op ongeveer 1/3 tot ½ (bvb: 6/15). Wanneer je dan naar muziek luistert kan je de subbass verlagen voor verschillende muziekstukken en hoger zetten voor andere; het geeft een goede flexibiliteit. Anders zet het sublevel op 0.

    12. Zet de Gain volledig terug.

    13. zet het LP filter hoger in dan nodig (bvb: 150Hz)

    14. Schakel LOUD en EQ uit.

    15. Speel weer de cd af en zet het volume van de HU naar wat gebruikt is bij het afstellen van de rest.

    16. langzaam verhoog je de Gain omhoog: doe dit totdat je enige vervorming hoort.

    17. als laatste pas je de LP filter aan: verlaag het tot een instelling waar de HP staat van de voorspeakers.
    Nu zul je een vorm van balans dienen te bereiken tussen alle speakers zonder dat er iets overheerst.

    18. Ontkoppel of schakel de subwoofer uit wanneer je de balans instelt van de voor en achter speakers (fading). Gebruik de Fader om een balans in te stellen tussen voor en achter zoals je zelf wilt.

    19. Koppel de rest van de kanalen weer aan.

    20. Stel nu vast of de subbass te hoog is, wat vaak het geval is. Als dit zo is, verhoog dan NIET de gain op de voor / achter versterker kanalen maar verlaag de Gain op de subwoofer versterker. Stel dan de Gain van de subwoofer versterker in voor een goede balans tussen de subwoofer en voor / achter.

    De meeste mensen houden van een beetje subhevige actie wat natuurlijk hun keuze is.
    Bingo, je bent bijna klaar!
    Als je wilt, kan je de EQ afstellen als je wilt naar je eigen smaak.

    Vergeet niet dat als je de frequenties versterkt (alhoewel sommige mensen het afsluiten meer prefereert), je de versterker weer meer richting het punt van clippen krijgt.

    Dit betekent, als je de volume nu verhoogd tot wat voorheen het maximum was, de versterker nu de kans loopt om te gaan clippen omdat het signaal sterker is dan voorheen.

    Vanwege deze reden zul je de Gain iets lager moeten afstellen om dit te compenseren of verhoog het volume nooit hoger dan wat je eerst gebruikt hebt om de Gains af te stellen.

    De meeste enthousiastelingen gebruiken ook nooit de LOUD instelling: het is onnodig.

    Als laatste, realiseer dat iedere cd opname in kwaliteit kan verschillen.

    Soms kan het zijn dat een opname erg hoog is afgesteld.

    Onthoud dan dat zo een opname de versterker dichter tot het punt van clippen kan brengen en je daardoor niet het volledige volume kan gebruiken.

    Belangrijk: het afspelen van test tonen (constante frequentie), zoals gedaan word tijdens SPL competities, zorgen ervoor dat het RCA output signaal sterker is dan met muziek. Ook dit kan de versterker dichter bij clippen brengen en dien je de volume onder zijn maximum te zetten.

    Als alle Gains en cross-over filters goed zijn ingesteld, zal je de installatie gebruiken met de wetenschap dat je al het bruikbare vermogen eruit haalt en kan je het volume verhogen met een laag risico om je componenten te beschadigen door teveel vermogen.

    Geniet ervan!
    Wat extra notities:
    Bij het afstellen van een installatie voor een goede geluidskwaliteit, een van de doelen is ‘voorzijde’ bass, waarbij het lijkt dat alle bass van de voorspeakers komt, wat beter is dan dat het lijkt dat de bass van de subwoofer komt of vanuit de achterzijde van je auto.
    De truck is natuurlijk om de subwoofer te filteren op een lage frequentie, zodat je oren niet kunnen vertellen van waar het geluid vandaan komt en stel dan het systeem zo af, zodat de subwoofer goed samenvalt met de speakers die de midbass speelt in je voorzijde.

    Er zijn 2 belangrijke punten die je dient te overwegen:
    Allereerst, wees er zeker van dat het subwoofer volume level goed overeenkomt. Hiermee bedoel ik dat je zeker moet weten dat je een gelijkwaardig volume hebt in vergelijking met de voorzijde. Zo niet, zal als de subwoofer de voorzijde overstemt, de bass niet goed samenvallen en klinkt het niet zo geweldig.
    Als tweede is het belangrijk om de High pass (voor je voorspeakers) en de low pass (op je subwoofer) goed af te stellen.
    De eigenlijke cross-over punten is gebaseerd op hoe laag je voorspeakers kunnen spelen, zonder vervorming. Als voorbeeld, sommige speakers zullen bij het afspelen van een midbass niet zo laag spelen, of zijn ze gelimiteerd in een lineaire afbuiging op een dusdanige manier dat als je dit te hard afspeelt op een lage frequentie, je vervorming krijgt.
    (hoe hoog de subwoofer kan spelen is ook een factor, maar er zijn maar weinig subwoofers die een zulke hoge inductantie hebben dat zij niet voorbij de 100Hz kunnen spelen).
    De installatie is ook een variabele, zeker het ontwerp en locatie van de subwooferkist, als ook de installatie / locatie van de voorzijde drivers, en ook de filters zelf. Bijvoorbeeld, de afstelling (Q) van het filter (als het een Butterworth of een linkwitz-riley e.d. is), als ook de curve van de filtering.
    Als geluidskwaliteit een prioriteit heeft, stel ik voor om de filters op vrij lage punten af te stellen (sommige SQ auto’s hebben hun subwoofer LP gefilterd onder de 50Hz!) en dan langzaam deze te verhogen, als ook afhankelijk hoe dicht bij elkaar de HP (voorzijde) en de LP (op de subwoofer) filters afgesteld worden. Zoals al eerder aangegeven, kan een kleine verschil tussen beide filter best goed werken. Het doel is om gewoon de verschillende afstellingen te testen en te luisteren wat het beste klinkt.


  • NTC of PTC weerstand

    De NTC of PTC-weerstanden NTC-weerstand PTC-weerstand (het algemeen gebruikte symbool voor NTC/PTC weerstanden in schakelingen)

     

    Links het symbool voor een NTC-weerstand en rechts het symbool voor een PTC-weerstand
     

    In de elektronica-wereld worden NTC of PTC-weerstanden ook wel met Negatieve TERMISTOR of Positieve TERMISTOR genoemd
     

    Maar vaak zal in componentenlijsten als benaming NTC of PTC gehanteerd worden.
     

    Als eerste de NTC-weerstand

     

    De afkorting NTC van een NTC-weerstand, staat voor Negative Temperature Coëfficiënt.
     

    Dit betekent dat de weerstands-waarde zal afnemen waneer de temperatuur gaat toenemenbinnen een bepaald bereik.
     

    De vergelijking van Arrhenius geeft het verband tussen weerstand en temperatuur
     

    Naarmate de NTC meer elektrisch vermogen opneemt, zal de temperatuur hoger zijn dan de omgevingstemperatuur.
     

    Bij gebruik als temperatuursensor dient dit effect tot een minimum te worden beperkt.
     

    De zelf-opwarming kan ook nuttig aangewend worden, bijvoorbeeld om een inschakel-stroompiek te begrenzen.
     

    De NTC is een halfgeleider-component. Het materiaal is gewoonlijk een metaaloxide, waaraan sporen van metaaloxiden met een andere valentie zijn toegevoegd.
     

    Vaak zijn NTC’s uitgevoerd in een schijfvorm met de twee parallel lopende aansluitdraden in het vlak van de schijf.
     

    Metalen uitvoeringen met een stukje draadeind eraan om een betrouwbare bevestiging (thermisch contact) op een koelplaat mogelijk te maken komen voor bij de grotere vermogen NTC.
     

    Er bestaan ook SMD-uitvoeringen van de NTC.
     

    NTC met kleurcode
     

    Uitvoering van een NTC welke is voorzien van een kleurcodering als waardeaanduiding.
     

    NTC voor groot vermogen
     

    Een NTC welke is voorzien van schroefdraad, om voor grotere vermogens en/of goed contact ingezet wordt.
     

    NTC in schijf-uitvoering
     

    Een NTC in schijfuitvoering, welke is voorzien van een gestempelde codering
     

    Miniatuur NTC
     

    Klein formaat NTC, welke is voorzien van een contactvlak om via een schroef/bout te monteren.
     

    De weerstandswaarde van de NTC wordt vastgelegd bij een temperatuur van 25°Celsius en heeft dan een waarde uit de E12-reeks.
     

    Klik hier voor een volledig overzicht in tabelvorm.
     

    In de tabel ziet u bij 25°Celsius de gegevens VET-gedrukt, omdat dit de referentie-temperatuur is.
     

    Afhankelijk van de waarde heeft een NTC bij -40°Celsius een 13 tot <48/b> maal zo hoge waarde als bij 25°Celsius en bij 150°Celsius een 17 tot 50 keer zo lage waarde.
     

    NTC-weerstanden, kunnen zijn voorzien van een kleurcodering of van een cijfer/letter-combinatie.
     

    Kleurcode NTC
     

     

    informatie over onderstaand component volgt spoedig.

     

    De tegenhanger van de NTC weerstand is de PTC-weerstand.
     

    De afkorting PTC van een PTC-weerstand, staat voor Positive Temperature Coëfficiënt.
     

    Dit betekent dat de weerstands-waarde zal toenemen waneer de temperatuur gaat toenemen binnen een bepaald bereik.
     

    De voor de NTC-weerstand weergegeven informatie is ook van toepassing op PTC-weerstanden.
     

    Ook de wijze van kleurcodering en uiterlijke kenmerken komen sterk overeen met de NTC-weerstand.


  • Weerstand

    weerstand.png

     

    het algemeen gebruikte symbool voor weerstand in schakelingen

     

    Een weerstand is een elektrische component dat dient om de doorgang van elektrische stroom te bemoeilijken, door er weerstand aan te bieden, met als gevolg een spanningsval over de weerstand.
    Weerstanden worden gebruikt als onderdeel in elektrische netwerken. Voor zo’n component is er volgens de wet van Ohm een vaste verhouding tussen de aangelegde spanning en de stroom die vloeit. Deze verhouding is de weerstandswaarde, die uitdrukt in welke mate de stroom hinder ondervindt. De weerstandswaarde, wordt uitgedrukt in de afgeleide SI-eenheid Ohm.
     

    Uitvoeringen van weerstanden:
     

    Een weerstand ontleent zijn eigenschap aan een weerstandsmateriaal, waarvoor koolstof en metaallegeringen gebruikt worden. De meest voorkomende weerstanden zijn tegenwoordig koolstofweerstanden.
     

    R-kool.png
     

    Koolweerstand
     

    Een massaweerstand bestaat volledig uit koolstof. Andere typen zijn uitgevoerd met een koolstoflaagje, al dan niet gespiraliseerd. Weerstanden met weerstandsdraad van een geschikte metaallegering worden gewikkeld om een kern, ten einde voldoende lengte van de draad in een klein volume te kunnen verwerken. Gewikkelde weerstanden hebben het nadeel dat bij hogere frequenties de zelfinductie van de wikkeling niet te verwaarlozen is. Naast precisieweerstanden van weerstandsdraad zijn er ook uitvoeringen met een metaalfilm. Metaalfilm- en koolstofilm-weerstanden lijken qua constructie veel op elkaar. Ze bestaan beide uit een dun opgedampt laagje koolstof of metaal (NiCr) waarin een spiraal is gesneden om de juiste weerstandswaarde te bereiken.
     

    R-metaal.png
     

    Metaalfilm weerstand
     

    R-wikkel.png
     

    Gewikkelde weerstand (voor groot vermogen)
     

    R-draad.png
     

    Weerstandsdraad
     

    vanwege de vraag naar steeds kleinere electronica, komen steeds meer componenten in een Surface Mounting Device uitvoering op de markt. Deze SMD-techniek, maakt geen gebruik van aansluitdraden maar heeft contactvlakken om te kunnen verbinden via soldeerpasta. Het mooiste is om gebruik te maken van een reflow-oven, hiermee bereikt u het gelijkmatig vloeien van de soldeerpasta. Wanneer u af en toe een SMD-component toepast, kunt u deze ook gewoon solderen.
     

    R-smd.png
     

    Een SMD-uitvoering (sterk vergroot, in werkelijkheid bestaat uit SMD-weerstand uit enige millimeters)
     

    het getal 101 welke op de SMD-weerstand staat (vaak via een vergrootglas moet worden achterhaald), moet worden vertaald in een weerstandswaarde. Uitleg hierover volgt geheel onderaan.
     

    Weerstandswaarden:
     

    ALGEMEEN:Hoe groter de tolerantie, hoe breder het bereik van de waarde is. Als er een serie weerstanden gewenst is, heeft het alleen zin om twee waarden te fabriceren waarvan het tolerantiegebied elkaar niet overlapt. Op basis van de voorkeursgetallen van Charles Renard zijn voor bepaalde elektronische componenten, zoals weerstanden, de zogenaamde E-reeksen ontwikkeld.
     

    Deze getallenreeksen vormen bij benadering een meetkundige rij, waardoor de verhouding tussen twee opeenvolgende waarden binnen dezelfde reeks ongeveer constant is.
     

    Klik voor een lijst van alle E-reeksen
     

    Tolerantie:
     

    Zoals u in de E-reeksen tabellen kunt zien, heeft iedere E-reeks een vaste tolerantie-waarde.
     

    De meest gebruikte E-reeks voor weerstanden is de E24-reeks, vanwege de 5% tolerantie. Daarnaast wordt ook de E96-reeks regelmatig toegepast, voor precisie-weerstanden met een tolerantie van 1%.
     

    In schakeling-schema’s worden afkortingen voor de waardes gebruikt. Zouden we alle waardes voluit in het schema noteren, dan wordt het schema onleesbaar. Bij waarden onder de één Ohm wordt het aangegeven met de letter R vòòr de waardeaanduiding: R47 = 0,47 Ohm Er kan ook een letter tussen de cijfers staan: 1E8 = 1,8 Ohm. Bij waarden onder de 1000 Ohm wordt vaak een R achteraan de waarde toegevoegd: zo wordt 56 Ohm wordt geschreven als 56R, en 720 Ohm als 720R Bij waarden van 1000 Ohm en hoger, wordt de letter K gebruikt van KiloOhm op deze wijze: 1000 Ohm = 1K, 4700 Ohm = 4K7, 12000 Ohm = 12K enzovoorts. Bij waarden van 1000000 Ohm en hoger, wordt de letter M gebruikt van MegaOhm op deze wijze: 1000000 Ohm = 1M, 3300000 Ohm = 3M3, 10000000 = 10M enzovoorts. Bij waarden van 1000000000 Ohm en hoger, wordt de letter G gebruikt van GigaOhm op deze wijze: 1000000000 Ohm = 1G, 3300000000 Ohm = 3G3, 10000000000 = 10G enzovoorts.
     

    In schakeling worden bijbehorende componentenvaak in een lijst weergegeven, de weerstands-waarde worden dan als volgt weergegeven 0,1 ohm, 100 ohm, 1,2 Kohm = 1,2 KiloOhm, 10 Kohm = 10 KiloOhm, 1 Mohm = 1 MegaOhm, 1 Gohm = 1 GigaOhm
     

    Via de electronica componenten leveranciers, zijn weerstanden verkrijgbaar met standaardwaarden uit deze reeksen tussen enkele µOhm (micro-Ohm) (voor hogestroommeting) en ten minste 56 GOhm (giga-Ohm) (voor bijvoorbeeld hoogspanningsmeting) volgens de E-reeksen.
     

    Omdat zoals eerder beschreven bemoeilijkt een weerstand de stroom-doorgang. Hierdoor ontstaat warmte in de weerstand, welke aan de omgeving afgegeven wordt.
     

    Weerstanden hebben een maximale werkspanning en vermogen. Boven de maximale werkspanning kan doorslag optreden, wat het einde van het component betekent.
     

    Wordt het maximale vermogen overschreden gedurende een te lange tijd zal de weerstand veranderen, in sommige gevallen zelfs dramatisch, doordat de weerstand beschadigd raakt.
     

    Hoewel sommige weerstanden specifieke spanningsbeperkingen hebben, worden de meeste grenzen in de toepassing bepaald door het maximum vermogen.
     

    Dit hangt af van de bouw van de weerstand, zoals de afmetingen en het materiaal. Grotere weerstanden kunnen meer hitte dissiperen door hun grotere oppervlakte.
     

    De gebruikelijke vermogensbeperkingen voor weerstanden gebaseerd op koolstof zijn: 1/8 watt, 1/4 watt, 1/2 watt, 1 watt.
     

    Draadgewonden weerstanden en weerstanden gevuld met zand, hebben een veel hogere vermogensbeperking zoals 20 watt.
     

    Weerstanden met passieve of actieve koeling kunnen nog veel grotere vermogens verwerken. Zulke weerstanden worden bijvoorbeeld gebruikt om elektromotoren te regelen, zoals in elektrische treinen en trams.
     

    Om te weten, welke weerstand van toepassing is, moet de waarde zichtbaar worden gemaakt.
     

    Op weerstanden welke redelijk groot van afmeting zijn, kan dit door de fabrikant aan de buitenkant op de weerstand worden gestempeld. (zie hiervoor de afbeelding van de gewikkelde weerstand.
     

    Op weerstanden met een vermogen van 1 Watt en lager, wordt van een kleurcodering gebruik gemaakt, welke bestaat uit 4 of 5 gekleurde ringen. Zoals u op afbeeldingen van de koolstof- en metaalfilm-weerstanden kunt zien
     

    weerstkool.png
    Kleurcode-overzicht voor koolstof-weerstanden

    Met behulp van het kleurcode-overzicht, hierboven kan de waarde van een koolstof weerstand worden afgelezen en vastgesteld op de volgende wijze:
     

    Bij het aflezen, moet de gouden of zilveren ring aan de rechterzijde worden gehouden
     

    Daarna kunnen de gekleurde ringen van links naar rechts worden gelezen, en het bijbehorende cijfer in de tabel worden opgezocht.
     

    U heeft een weerstand met de kleuren: bruin-zwart-rood-goud, dan is de waarde 1 0 x 100 = 1000 Ohm of 1K. De vierde ring goud geeft een tolerantie van 5% aan.
    Wanneer u een weerstand heeft, zonder gouden of zilveren ring is de tolerantie lager dan 5%
    Om nu de juiste kleurcode aan de hand van de ringen af te lezen, mag u stellen dat de ruimte tussen de laatste waarde-ring en de tolerantie-ring groter is dan tussen de overige ringen.
    Een weerstand met de kleuren oranje-wit-geel-rood heeft een waarde van 3 9 x 10K = 390K. De vierde ring, is in dit geval rood welke een tolerantie van 2% aangeeft.
    Een weerstand met de kleuren groen-blauw-goud-goud heeft een waarde van 5 6 x 0,1 = 5,6 Ohm met een tolerantie van 5%.
    Er kan zich een situatie voordoen, waarop u een weerstand heeft met drie gekleurde ringen, dan heeft u te maken met een tolerantie-waarde van 20%

    weerstmetaal.png
     kleurcode-overzicht voor metaalfilm-weerstanden

    Met behulp van het kleurcode-overzicht, hierboven kan de waarde van een metaalfilm weerstand worden afgelezen en vastgesteld

     Hanteer dezelfde wijze als voor de koolstof weerstand, echter met het verschil dat er nu vijf en soms zes> ringen gebruikt worden.

    Voor een weerstand met de kleuren: bruin-bruin-zwart-rood-goud, is de waarde 1 1 0 x 100 = 11 KiloOhm met een tolerantie van 5%.
    Een weerstand met de kleuren oranje-wit-zwart-rood-rood heeft een waarde van 3 9 0 x 100 = 39 KiloOhm met een tolerantie van 2%.
    Een weerstand met de kleuren groen-blauw-bruin-blauw-groen heeft een waarde van 5 6 1 x 1M = 561 MegaOhm met een tolerantie van 0,5%.
    Een eventuele zesde ring wordt gebruikt om de temperatuurcoëfficiënt aan te geven. Hiervoor biedt het genormaliseerde kleurcode-overzicht geen informatie, en bent u afhankelijk van uw leverancier.
    SMD-weerstanden , R-smd.png zijn in de E24- en E96-reeksen verkrijgbaar.
     

    Vanwege steeds verdergaande minimalisering van component-afmetingen, bestaan er voor weerstanden in SMD-behuizingen diverse uitvoeringen.
    Klik hier voor een lijst van de beschikbare SMD behuizingen, en hun Europese of internationale aanduidingen van de beschikbare behuizingen. Hierin staan dus  de europese(metrische) codering en afmetingen alsmede de internationale(inch) codering en afmetingen weergegeven.

     Zoals u op de afbeelding van de SMD-weerstand kunt zien, staat hier een code: 101 op.

    De cijfercode op standaard SMD-weerstanden bestaat uit 2 cijfers voor het getal en één cijfer voor de vermenigvuldigingsfactor. Het laatste cijfer is altijd de vermenigvuldigingsfactor (het aantal nullen achter het getal). Bijvoorbeeld code 101 = 10 met één nul erbij, hetgeen 100 Ohm aangeeft.
    SMD-weerstanden weke een weerstandswaarde bezitten van MINDER dan 10 Ohm hebben de letter R opgenomen in de 3-cijferige codering.

    Vanwege deze mengeling van cijfers met een letter staat de codering internationaal bekend als 3 digit
    voor een overzicht van alle beschikbare waarden, welke in de E24-reeks met 5% tolerantie vallen en een 3-digit codering bevatten.
    Klik voor een lijst met alle SMD 3digit E24

     Voor precisie-weerstanden, welke tegenwoordig in zowel de E24-reeks als ook in de E96-reeks worden gefabriceerd, en over het algemeen een tolerantie van 1% of minder tot zelfs 0,1% hebben, is een codering van 4 cijfers/letter in het leven geroepen.

     Vanwege deze mengeling van cijfers met een letter staat de codering internationaal bekend als 4 digit

    Voor een overzicht van alle beschikbare waarden, welke in de E24-reeks met 1% of minder tolerantie vallen en een 4-digit codering bevatten.
    Klik hier voor een lijst met alle SMD 4digit E24
    Voor een overzicht van alle beschikbare waarden, welke in de E96-reeks met 1% of minder tolerantie vallen en een 4-digit codering bevatten.
    Klik voor een lijst met alle SMD 4digit E96
    Voor een overzicht van alle beschikbare waarden, welke in de nieuwste EIA-E96-reeks met 1% of minder tolerantie vallen en een 4-digit codering bevatten.
    Klik hier voor een lijst met alle SMD EIA-E96-reeks
     


  • Vermogen berekenen

    Er is een eenvoudige formule voor het berekenen van het vermogen van een elektronisch apparaat. Wat je nodig hebt is de opgenomen stroom en de spanning van het apparaat, en daar is niet moeilijk achter te komen.
    vermogen berekenen

    De formule is: vermogen = stroom x spanning.
    Bepaal de stroom en spanning van het apparaat.

    Meestal vind je aan de onderkant of achterkant van het apparaat een sticker met informatie. Hierop staan stroom en spanning vermeld.

    • De spanning wordt vaak aangegeven met het woord ‘Voltage’ en de letter ‘V’.
    • Het getal bij de stroom is meestal kleiner dan het getal bij de spanning, en vaak wordt de stroom in decimalen vermeld. Achter het getal staat meestal de letter ‘A’.
    • Deze getallen geven het maximale aantal aan, niet per definitie de aantallen die gelden bij normaal gebruik. Het vermogen dat je uitrekent met behulp van deze getallen is dus waarschijnlijk hoger dan het daadwerkelijke vermogen.
    • Als we bijvoorbeeld op de sticker 10 ampère en 24 volt zien staan, dan is het opgenomen vermogen 240 watt (10 x 24 = 240).
    • Als je meer dan één apparaat gaat gebruiken binnen een circuit, tel dan de vermogens van de apparaten bij elkaar op om het totale vermogen te berekenen.
    • Als het maximale vermogen minder is dan de vermogens van de apparaten bij elkaar opgeteld, dan moet je de apparaten nooit tegelijkertijd gebruiken. Daar komt bij dat een opstartend apparaat gedurende korte tijd een hoger vermogen gebruikt dan berekend.
    • Zorg altijd dat het maximale vermogen van een groep ver boven de opgetelde apparaten blijft.

    Waarschuwing

    • Te veel apparaten op een groep zorgt ervoor dat alle apparaten iets minder zullen gebruiken. Er kan schade ontstaan aan de apparaten en ze kunnen ermee stoppen.
    • De berekening geeft slechts een benadering, als je het precieze verbruik van een apparaat wilt weten heb je een vermogensmeter nodig.
    • Deze berekening klopt niet voor een groot aantal apparaten. Als er bijvoorbeeld een motor in het apparaat zit is er een andere formule nodig.