Omschrijving: 1,0,96 inch TFT high-definition scherm, alles-in-één display, compatibel met verschillende DC-poortapparaten, stabiel, tijdig en efficiënt.
Spannings- en stroomdetectie, opname van stroomgegevens, voor het inschakelen van apparaten zoals computermonitoren, elektrisch gereedschap, routers, enz., meerdere gegevens worden op één scherm weergegeven.
Intelligente geheugenstroom, realtime weergave: realtime weergave van stroomstatus, spanning, stroom, capaciteit en andere gegevens in één oogopslag.
Klik op de knop om de pagina te wijzigen.Dubbelklik op de knop om de pagina om te draaien, die op verschillende plaatsen aan verschillende behoeften kan voldoen.
Kies uiterst nauwkeurige acquisitiechips die bidirectionele stroomdetectie ondersteunen en het hoogste vermogen, de maximale stroom en de hoogste spanning in één handeling kunnen registreren.
CrocSee AC 80-260V 100A CRS-022B LCD-scherm Digitaal Stroom Spanning Vermogen Energie Frequentie Vermogensfactor Multimeter Ampèremeter Voltmeter met 100A Split Core Stroomtransformator
Deze elektriciteitsmeter kan tegelijkertijd spanning, stroomsterkte, actieve energie, elektrische energie, frequentie en vermogensfactor bewaken en weergeven.
Model: 100A (stroomtransformator met gesplitste kern)
Vermogen: 22000 watt
Aantal per verpakking: 1
Batterijen inbegrepen?: Nee
Batterijen vereist?: Nee
6-in-1 meter
De meter: Deze kan alleen het actieve vermogen (werkelijke vermogen) meten. Hij geeft geen schijnbaar vermogen weer. Als u het vermogen van een DC-AC-omvormer meet, zorg er dan voor dat het een zuivere sinusgolf is. Anders kan de meter verbranden of smelten. 6-in-1 meter: Het grote, heldere scherm kan tegelijkertijd spanning, stroomsterkte, actief vermogen, cumulatieve energie, frequentie en arbeidsfactor weergeven. Gemakkelijk af te lezen: De achtergrondverlichting kan handmatig worden in- en uitgeschakeld, gemakkelijk af te lezen in het donker of bij fel licht. Lees verder → Bericht ID 10163
afb. 01 Het verborgen TX6 schroefje in de Sonoff S60
De Sonoff S60TPF is niet zo snel en handig te flashen als de oudere en meer bekende Sonoff’s, deze moeten we een beetje masseren met een waterpomptang, gebruik wel een tissue of poetsdoek om schade te voorkomen.
Als eerste moeten we het kleine schroefje in de onderkant bij de aarde losmaken, dit is een TX6 en deze moet vrij dun zijn, gelukkig had ik mijn Wera Kraftform Micro Big Pack 1 Micro-schroevendraaierset binnen handbereik. (afb. 01)
Als 2e moeten we het binnenwerk losmaken, dit is gelijmd, maar door met een waterpomptang rustig wat druk te zetten hoor je deze losbreken, draai de plug zo helemaal rond en blijf deze masseren met de tang tot het binnenwerk loskomt. afb. 02 (Let op de aardpennen haken zich vast aan het grijze binnendeel, even terugduwen met een vingertopje…)
afb. 02 Kraak de rand met een waterpomptang, gebruik wel iets van bescherming.
Nu het schroefje verwijderen in het midden van de aardklemmen. Dit is een Philips 0 (afb. 03)
afb. 03 Dit schroefje eerst verwijderen, PH0
Dan de aardklem desolderen.
Nu hebben we een soldeerbout nodig met flink wat vermogen en een hoge temperatuur. We moeten de aardklem desolderen van de print, dit ging prima met een stevige soldeertip (T12-BC3) op 450° graden celsius. Ik heb een klein puntbektangetje op de klem gezet, beetje flux, snel opwarmen en de klem met de tang weggenomen. Dit werkt perfect en snel.
Nu nemen we het grijze stukje plastic weg, zit niet vast, met tangetje of pincet te verwijderen.
Hieronder zie je 2 kleine stukjes “Blue tack” o.i.d., deze zitten op de volgende te desolderen punten.
Nu zit er nog wat lijm op 2 of 3 punten aan de zijkant, dit heb ik opgelost met isopropanol alcohol 99,9%, en met een fijn pincet verwijdert.
Het desolderen van de print is even makkelijk als de aardeklem, ik heb een voor een de koperen contacten met het puntbektangetje onder spanning gezet, wat flux erop, en door beide kanten om en om te verwarmen en zo omhoog te werken nog geen minuut werk.
Neem gelijk wat flux en solderwick om deze pinnen en contacten op te knappen.
Nu moeten we 4 jumperkabeltjes bevestigen aan de +5v, gnd, RDX en TDX. Hiervoor gebruik ik een T12-IL9 als soldeertip op 350 graden celsius afb. 04 & afb. 05
Jumperwires solderen aan de Sonoff S60TPF Europe voor flash Tasmota
afb. 05 Jumperwires solderen aan de Sonoff S60TPF Europe voor flash Tasmota
Als je hebt gecontroleerd dat er geen soldeerbruggen of sluitingen zijn kunnen we gaan flashen met Tasmota of ESP-Home als dat je voorkeur heeft, ik behandel hier Tasmota in combinatie met Tasmotizer of via de website, dat heeft mijn voorkeur.
Start de browser “Google Chrome”, ik ben zelf meer van “Firefox” maar dat geeft soms onverklaarbare problemen dus beter Chrome.
Sluit de USB to TTL aan op je USB poort, houdt het knopje ingedrukt voor een paar seconden, dit brengt de module in flashmode. (let op deze moet je op de 5 volt aansluiten, 3.5 volt werkt echt niet)
Ga naar https://tasmota.github.io/install/ en kies in he lijst de volgende image/binary: https://ota.tasmota.com/tasmota32/tasmota32c3.factory.bin en klik op “CONNECT” in de lijst zie je (Onder Linux) helemaal onderaan USB2.0-Serial (ttyUSB1). Deze selecteren we. (Het kan zijn dat je geen rechten hebt, ga dan naar je terminal en voer uit: sudo usermod -a -G dialout GebruikersNaam om jezelf aan de dialout groep toe te voegen.
Klik nu op “INSTALL TASMOTA32-C3 2M (ENGLISH), vink aan “Erase device” en klik op next en in het volgende scherm op “INSTALL”.
Nu wordt de oude flash gewist en de nieuwe geschreven, dit duurt iets langer dan de andere Sonoff’s die ik heb geflashed, maar na een paar minuten is de flash geschreven.
Druk op next, en je bent klaar, neem de USB to TTL uit de USB-poort, wacht 10 seconden en plaats deze terug.
Nu kun je na ongeveer 30 seconden een WIFI netwerk met een naam beginnend met tasmota, bijvoorbeeld “tasmota-A95106-4258”, maak een WIFI verbinding met dit netwerk, met je PC of telefoon, als de verbinding tot stand is gekomen ga je in je browser naar http://192.168.4.1/ selecteer je eigen WIFIPUNT uit de lijst en geef je wachtwoord op en klik op “CONNECT”.
Nu krijgt je Sonoff een adres van je DHCP server, soms geeft hij deze door en gaat hij er direct heen, maar het gaat ook weleens mis, in dat geval moet je in de config van je DHCP server kijken wat het ip adres van je sonof is.
Tasmota heeft de Sonoff S60 niet in de binary zitten, dus gebruiken we een template.
Als je weer verbonden bent met je Sonoff S60 klik je op “OTHER”, bovenaan staat de regel template, plak daar de volgende regel: {"NAME":"S60","GPIO":[1,1,1,1,224,544,1,3104,1,32,1,0,0,0,0,0,0,0,1,1,1,1],"FLAG":0,"BASE":1}
Je kunt hier ook gelijk een Web Admin Password opgeven, en je Sonoff een naam geven. Laat Emulation op NONE staan en klik op “Save”.
Je Sonoff start nu opnieuw op en is goed ingesteld voor gebruik met de S60.
Als alles naar je zin is kun je de TTL to USB uit de USB-poort verwijderen en de 4 jumperkabeltjes verwijderen, gebruik daarna een klein beetje flux en knap de solderingen op (zonder soldeerbruggen).
Maak de solderingen en omgeving goed schoon met isopropanol alcohol 99,9% en een kwastje of wattenstaafje om corrosie te voorkomen. (ja ook noclean flux)
Plaats de print terug in zijn behuizing en soldeer de pinnen en monteer alles in omgekeerde volgorde van demonteren.
Wees geen ‘Uncle Fester’… bouw een Dim Bulb Tester
Als je oude stereoapparatuur test, kan een tester voor dimbare lampen erg handig zijn. Hij is echter niet bedoeld om lampen te testen, maar om andere dingen te testen.
Terry van Erp legt het allemaal uit in zijn handleiding voor het zelf maken van zo’n tool. Wees wel voorzichtig: je moet weten wat je met netspanning doet om dit veilig te kunnen doen!
De dimbare lamp is een bedrieglijk eenvoudig hulpmiddel dat desondanks vaak nuttig blijkt bij diagnoses. Hij bestaat normaal gesproken gewoon uit een lamp die in serie is geschakeld met de te testen apparatuur.
De lamp moet een wattage hebben dat vergelijkbaar is met het opgenomen vermogen van de apparatuur zelf. Neem bijvoorbeeld een versterker.
Als de lamp fel brandt wanneer de versterker onbelast is, wijst dit erop dat er ergens kortsluiting is. Dat komt doordat de gloeiende lamp aangeeft dat er veel stroom wordt getrokken onder omstandigheden waarin er eigenlijk maar weinig stroom zou moeten lopen. De lamp beschermt de apparatuur door in feite te fungeren als een soort stroombegrenzer.
Voedingsspanning: DC 4,5-6V (5 V micro-USB-connector)
Bedrijfsstroom: minder dan 70 mA Ontladingsspanning: 1,00 V – 15,00 V Resolutie van 0,01 V
Beëindigingsspanningsbereik: 0,5 – 11,0 V
Ondersteund door stroom: 3.000A Resolutie 0.001A
Maximale meetfout spanning: 1% + 0.02V
Maximale meetfout stroom: 1.5% + – 0.008A
Maximale batterijcapaciteit: 9999Ah (1Ah = 1000mAh). (Een hogere waarde kan worden bereikt door de decimale punt te verschuiven om over te schakelen wanneer de weergave minder dan 10Ah X.XXX is, zoals hierboven weergegeven om 10Ah XX.XX te bereiken, enzovoort.
Afmetingen printplaat: 50 mm x 37 mm
Afgewerkte maat: 50 mm x 37 mm x 17 mm (lengte x breedte x hoogte, maximale positiegrootte, met de messing afstandhouders met m3 schroefdraad
18650 accu aangesloten op de ZB2L3 batterijcapaciteit tester
Sluit de batterij aan
De eerste test moet worden uitgevoerd met een volledig opgeladen batterij. (In dit geval een 18650)
Sluit de te testen batterij aan op de positieve ingang, de negatieve ingang op de negatieve. Deze mag niet worden omgedraaid; (omkering van de belasting kan het circuit beschadigen).
Sluit de 2 stuks 5 Watt belastingsweerstanden aan op de uitgang van de + positieve en – negatieve uitgang.
Controleer de spanning via de micro-USB-voeding van de tester (niet beschikbaar voor desktops of laptops met USB-voeding).
Stap 3
De 18650 accucel aangesloten op de ZB2L3 batterijcapaciteit tester geeft 4.17 Volt
De test starten
Directe starttest vereist slechts één druk op de “OK“-knop. De tester kan automatisch een geschikte eindspanning ontwikkelen op basis van de volledige acculading en zal na de test drie keer knipperen.
Kunstmatige eindspanning hoeft alleen te worden ontwikkeld wanneer de accuspanningsweergavestatus is ingesteld op een uitschakelspanning.
Door op de knoppen “+” of “-” te drukken, wijzigt u de weergave van de afsluitspanning, beginnend met P, achter de representatieve spanningsresolutie van 0,1 V. Nadat u op “OK” hebt gedrukt, start u de test.
De weerstanden warmen op tot 110° graden celcius, dus pas op voor brandgevaar. De print blijft netjes op kamertemperatuur, in dit gevan 25° graden celcius.
Stap 4
Test voltooid
Na de start van de test controleert de tester de belasting. De elektronische schakelaar wordt ingeschakeld. De testgegevens tonen aan dat het proces de capaciteit (Ah), de ontlaadstroom (A) en de accuspanning (V) tussen de looptijd vrijgeeft. Wanneer de accuspanning de ingestelde uitschakelspanning bereikt, chakelt de belastingsregeling de tester uit.
De displaygegevens blijven in de capaciteit (Ah) en hierboven en de bijbehorende indicator knippert snel samen, geeft nu de werkelijke capaciteit van de batterij aan. Is de ontlaadcapaciteit, druk op “OK” om het knipperen te stoppen, zorgt voor stabiele gegevensweergave, druk nogmaals op de “OK“-knop om terug te keren naar de ingeschakelde status.
Noteer de capaciteit op de accu met een stift of label (indien gewenst)
U kunt nu gewoon de batterij vervangen en de volgende sectie testen…
Stap 5
Foutcodes en hun betekenissen:
Err1: accuspanning is hoger dan 15V
Err2: batterijspanning is lager dan de eindspanning
Err3: Batterij kan de weerstand van de stroomlijn niet te veel laden of ontladen
Err4: Overstroom (stroom is hoger dan 3,1 A)
Stap 6
Notitie Let op: Gebruik de weerstand van het ontladingsproces, de weerstandsbelasting zal ernstig verhitten.tot wel 115° celcius!
Let op de brandveiligheid! Deze circuitspanning verbetert de meetnauwkeurigheid dankzij een speciaal ontworpen DC-bias. Wanneer de aansluiting niets weergeeft, heeft een kleine spanning geen invloed op de daadwerkelijke meting. Als u de ingangsaansluitingen kortsluit (absolute 0 V), wordt 0 weergegeven.
Als affiliate van Banggood en AliExpress verdienen we een kleine vergoeding aan de in aanmerking komende aankopen via de sponsor-advertenties
Ondersteun mijn website’s, kanaal en inhoud en mijn voortdurende inspanningen via Patreon: https://patreon.com/Colani
Model 683 van Aneng hoort bij de allernieuwste generatie handheld multimeters die volledig op een smartphone lijken en op dezelfde manier worden bediend, namelijk via het touch-screen.
Kennismaking met model 683 van Aneng
Type, fabrikant en prijzen
Vrijwel alle Chinese postorderbedrijven bieden deze multimeter aan als ‘model 683‘ van het merk Aneng. De prijzen variëren rond dertig euro. Op het moment van deze test betaalde u er bij Banggood € 26,30 en bij de goedkoopste aanbieder van AliExpress € 26,44 voor. Ons exemplaar werd gratis voor een test ter beschikking gesteld door Banggood.
De voornaamste kenmerken van de Aneng-683
Deze multimeter heeft als onderscheidend kenmerk dat hij is uitgerust met een net zo groot aanraakscherm als een smartphone en de vijf bedieningsknopjes dus niet als dusdanig aanwezig zijn, maar als pictogrammen op het scherm. Hij lijkt als twee druppels water op uw smartphone, het enige duidelijke verschil is dat deze meter veel dikker is dan een telefoon.
Het display bevat de tegenwoordig standaard aanwezige twee numerieke en een analoge display’s. De numerieke display’s hebben vier digits en hebben een weergavebereik tot 5999, behalve voor het meten van frequenties waar het bereik uitgebreid is tot 9999.
De meter wordt gevoed uit een ingebouwde 3,7 V lithium-accu met een capaciteit van 2.800 mAh. Deze accu kunt u opladen via een USB-C connector op de achterzijde uit een standaard 5 V adapter. Deze connector zit achter een min of meer spatwaterdicht klepje.
De meter heet ‘smart‘ omdat hij zélf kan bepalen wat u wilt meten. Een leuke reclamekreet die echter niet helemaal klopt. Hij schakelt automatisch om tussen weerstand, spanning en stroom, maar voor het meten van condensatoren, frequenties en temperaturen moet u tóch zelf ingrijpen. Uiteraard wordt ook het bereik automatisch geselecteerd, dat kunt u zelfs niet eens meer handmatig kiezen.
De meter wordt geleverd in een rode of zwarte rubberen beschermhoes en met een handig draagtasje. Lees verder → Bericht ID 10163
Een scheidingstransformator of scheidingstrafo is een transformator die galvanische scheidingen creëert tussen de primaire en secundaire wikkeling. Daardoor verminder het elektrocutie gevaar van het apparaat. Zo wordt deze o.a. gebruikt in geval van bijvoorbeeld boten die aansluiting vinden met stroomvoorzieningen aan de wal.
Andere benaming is ook wel veiligheidstransformator.
Scheidingstrafo
Een scheidingstrafo of voluit scheidingstransformator voorkomt het ontstaan van elektrolytische corrosie bij aansluiting op de walstroom. Een scheidingstrafo werkt als volgt.
Elektrolytische corrosie is het verschijnsel dat ontstaat door het natuurlijke potentiaal verschil (galvanische spanning) tussen verschillende metalen. Als twee van deze metalen zich in een geleidende vloeistof bevinden, zoals bij een boot, en elektrisch met elkaar verbonden zijn, zal er door de vloeistof een stroom gaan lopen. Hierbij wordt het ‘minst edele’ metaal aangetast.
Zeewater is een uitstekende geleider en veroorzaakt potentieel sterke corrosie. ‘Zoet’ water is echter ook geleidend dus ook in zoet water zal elektrolytische corrosie ontstaan.
Om aantasting van schroef, schroefas, afsluiters en andere metalen delen van een boot te voorkomen, worden zink anodes gemonteerd. Het minder edele zink wordt dan aangetast in plaats van de andere metalen delen.
Ook een stalen of aluminium scheepshuid kan ernstig worden aangetast.
Elektrolytische corrosie is te voorkomen door installatie van een scheidingstrafo. Uw boordnet is dan een volledig gescheiden elektrisch net met een eigen aarde en aardlekschakelaar. Een scheidingstrafo vervangt het gebruik van zink anodes niet overigens. Zink anodes zijn naast een scheidingstransformator nodig om te allen tijde – en zeker ook tijdens de vaart – aantasting te voorkomen van schroef, schroefas, afsluiters en andere metalen bootdelen.
Kortsluiting en de rol van de scheidingstrafo
Een walstroom aansluiting zonder aarde en aardlekschakelaar is levensgevaarlijk. Bij aansluiting van het schip op de walstroom dienen alle metalen delen verbonden te zijn met de aarddraad van de walaansluiting. De aardlekschakelaar onderbreekt dan de stroomvoorziening wanneer er een lekstroom of kortsluiting ontstaat naar de metalen delen van het schip. Zonder randaarde en aardlekschakelaar kunnen de boot en het water rond de boot onder spanning komen te staan als gevolg van kortsluiting of een lekstroom.
Juist door die aardverbinding met de wal en via eventuele walaansluitingen van andere boten, zal de elektrolytische corrosie echter sterk toenemen. Als gevolg daarvan kunnen vocht en elektrolytische potentialen ervoor zorgen dat de aardlekschakelaar veelvuldig of zelfs direct na verbinding met de walstroom in werking treedt. Dit zorgt voor onveilige en onwerkbare situaties.
De beste manier om optimale veiligheid in het elektrisch boordnet te garanderen is de installatie van een scheidingstransformator.
Zo werkt een scheidingstrafo
De scheidingstransformator draagt energie over aan het boordnet zonder rechtstreeks elektrisch contact met het walstroomnet. De elektriciteit wordt in een ringkern transformator omgezet in magnetisme om vervolgens weer te worden omgezet naar elektriciteit. De nulleiding van de secundaire zijde van de transformator is verbonden met de behuizing en de massa van het schip (alle metalen delen). Bij een eventuele elektrische storing zal een aardlekschakelaar of een zekering in werking treden.
Toepassingen
Scheerstopcontact inbouw RSD 1
De scheidingstrafo wordt onder andere gebruikt in reparatiewerkplaatsen en elektrotechnische laboratoria als het te testen apparaat zelf niet is uitgerust met een voedingstrafo (zoals veel geschakelde voedingen en televisietoestellen). Tijdens het foutzoeken of het ontwikkelen van zo’n apparaat, kan dan toch worden getest of gemeten met apparatuur die ook is aangesloten op het lichtnet. De scheidingstransformator vermindert bij deze toepassing het elektrocutiegevaar voor het betrokken personeel en voorkomt het ontstaan van stoorstromen en aardlussen. De secundaire zijde is in dit geval het beschermde circuit.
Een tweede toepassing van een scheidingstrafo is het voorkomen van ongewenste stromen aan de primaire zijde als gevolg van foutsituaties die aan de secundaire zijde optreden, bijvoorbeeld als gevolg van een secundair ingebrachte vreemde spanning die buiten beveiligingsbereik van de installatie aan de primaire zijde ligt. Dit probleem doet zich onder andere voor bij de voeding voor elektrische tractie zoals die voor het spoorwegbedrijf gebruikt wordt. Als een bovenleiding, die in Nederland 1800 volt gelijkspanning voert, breekt en bijvoorbeeld een op het normale net aangesloten camera raakt, kan zonder tussenschakeling van een scheidingstrafo als gevolg van doorslag en zeer grote overstromen een zeer gevaarlijke situatie in het voedende net van de camera ontstaan. De primaire zijde is in dit geval het beschermde circuit.
Een derde toepassing is in de scheepvaart. Metalen scheepsrompen (staal, aluminium) kunnen last hebben van extreme galvanische corrosie door een potentiaalverschil tussen de scheepsaarde (de scheepsromp) en de walaarde, ook doordat de aardgeleider het schip verbindt met andere schepen of met een stalen damwand. In deze situatie wordt een scheidingstransformator toegepast om een boordaarde te maken die niet verbonden is met de walaarde. Daarvoor wordt een van de secundaire aansluitingen verbonden met de scheepsromp, net zoals aan de wal ook de nul met aarde verbonden wordt in een transformatorhuisje. Op het schip wordt zo een vergelijkbare situatie gecreëerd als aan de wal. Nadat de secundaire aansluiting geaard is, worden er net als aan de wal aardlekschakelaars en zekeringautomaten toegepast. Een aardlekschakelaar werkt nu doordat de nul aan de scheepsromp is gekoppeld vóór de aardlekschakelaar. Er kunnen nu geen aardstromen lopen via de walaarde naar andere schepen of naar een stalen damwand. Vanzelfsprekend wordt in deze toepassing de walaarde niet aangesloten.
Een vierde toepassing is in zogenaamde “besloten ruimten”: tanks, vaten en leidingen waarvan de vloeren en wanden geheel of gedeeltelijk uit geleidend materiaal bestaan. Bij het betreden van zo’n ruimte met elektrische kabels en arbeidsmiddelen zou elektrocutiegevaar ontstaan bij de eerste de beste isolatiefout. Daarom wordt in zo’n ruimte gebruik gemaakt van een veilige spanning (max. 50 V wisselspanning of 120 V gelijkspanning) en, in gevallen waar dit niet mogelijk of niet gewenst is, een speciaal voor dit doel vervaardigde scheidingstransformator waarmee binnen de ruimte een zwevend net wordt gecreëerd.
Een huiselijke toepassing is de scheercontactdoos, dat is een stopcontact met ingebouwde scheidingstrafo. Om veiligheidsredenen mogen er geen stopcontacten in zones 0, 1 en 2 van badkamers worden aangebracht, terwijl veel mensen zich in de badkamer willen scheren. Een scheidingstransformator biedt daar uitkomst. Een bijkomend voordeel is dat zo een stopcontact probleemloos meerdere spanningen kan geven, wat een voordeel is op plaatsen waar veel buitenlanders komen, bijvoorbeeld in hotels. In zone 3 van een badkamer mag wel een stopcontact worden aangebracht, voor bijvoorbeeld een haardroger, mits dit stopcontact in de groepenkast een eigen aardlekschakelaar heeft.
Een beetje elektronica hobbyist moet eigenlijk wel een labvoeding hebben. Met een labvoeding kunnen schakelingen en losse elektronica gevoed worden met volledige controle over de voedingsspanning en de maximaal te leveren stroom (of stroombegrenzing). De voeding moet een regeling hebben voor de uitgangsspanning en een regeling voor de stroombegrenzing. Ook moet een labvoeding een schone ruisarme spanning produceren.
In veel (web)winkels worden normale voedingen soms wel als labvoeding aangeboden. Maar deze hebben niet altijd een regeling voor de stroombegrenzing en soms zelfs ook niet een regeling voor de uitgangsspanning. Beide regelingen zijn echter belangrijk als je zelfbouwschakelingen veilig wil testen, zonder gelijk een paar Ampère door je schakeling te duwen als het eens mis gaat! Een echte labvoeding heeft deze regelingen dus wel.
Labvoedingen heb je in alle vormen en maten. Veel modellen zijn uitgevoerd met één of meerdere transformatoren en de anderen zijn weer als schakelende voeding uitgevoerd. Er zijn modellen met analoge meters en modellen met digitale meters. De modellen met digitale meters heb je vervolgens ook weer in twee varianten; met of zonder microcontroller.
Modellen zonder microcontroller zijn traditioneel instelbaar met potmeters en modellen met microcontroller zijn instelbaar met een keypad, en een rotary-encoder. Deze voedingen hebben over het algemeen ook het voordeel van enkele geheugenplaatsen om een paar veelgebruikte instellingen op te kunnen slaan om deze daarmee snel in te kunnen stellen. Modellen met microcontroller zijn soms ook nog wat accurater, omdat de microcontroller is betrokken bij het regelcircuit. Echt luxe modellen met microcontroller hebben zelfs een USB aansluiting om deze te verbinden en te kunnen bedienen met een computer.
Wat hoe dan ook een labvoeding onderscheidt van een normale voeding, is de mogelijkheid tot het nauwkeurig instellen van een stroombegrenzing, naast natuurlijk de instelbare uitgangsspanning.
CC (Constant Current)
Is de ingestelde stroombegrenzing bereikt, dan gaat de voeding fungeren als een constante stroombron (Constant Current, C.C.). De stroom zal dan niet hoger worden dan de ingestelde waarde.
Dat is handig als je bijvoorbeeld een accu wil opladen. Maar de meeste elektronici zullen deze functie voornamelijk gebruiken als stroombegrenzer om de aangesloten schakeling te beschermen tegen beschadiging als er per ongeluk wat misgaat in de schakeling. Of om überhaupt te kijken of een schakeling goed gebouwd of ontworpen is. Dat is allemaal Constant Current dus.
Kenmerk: de voeding zal de uitgangsspanning zodanig omlaag regelen, zodat de stroom de ingestelde waarde niet zal gaan overschrijden. Een kenmerk van Constant Current mode is dat de voeding de uitgangsspanning regelt, maar de uitgangsstroom constant houdt. In Constant Current (C.C.) mode is de uitgangsstroomgestabiliseerd.
Wil je geen Constant Current gebruiken, dan stel je de labvoeding simpelweg op de maximale C.C. stand in. Maar helemaal uitschakelen kan niet. De voeding kan immers niet méér leveren. De maximaal in te stellen C.C. waarde dient dan als beveiliging voor de voeding. Dat maakt een labvoeding robuust.
CV (Constant Voltage)
Als de ingestelde stroombegrenzing niet in werking treedt, dan staat de voeding in de normale “Constant Voltage, C.V.” mode. Dat omschakelen gaat automatisch, zolang je de ingestelde C.C. waarde maar niet overschrijdt. Hoeveel stroom de aangesloten schakeling ook opneemt, de voeding zal de uitgangsspanning altijd op de ingestelde waarde proberen te houden. In Constant Voltage (C.V.) mode is de uitgangsspanninggestabiliseerd.
Voor reparatie doeleinden kan het PTC gedrag (Positieve temperatuurcoëfficiënt) van gloeilampen op een nuttige manier worden gebruikt.
Stel, je wilt een TV testen met een probleem in de voeding.
Als je die dan aansluit met een gloeilamp in serie, en de lamp blijft uit, dan staat vrijwel de hele netspanning op de voeding van de TV en kun je hieraan meten.
Als echter de voeding van de TV te veel stroom trekt, dan “triggert” te gloeilamp en gaat branden, en “begrenst” hiermee de stroom naar de TV. Met een beetje mazzel krijgt de voeding van die TV dan nog wel genoeg spanning en stroom om “iets” te doen, zodat je kunt fout zoeken.
Wees geen ‘Uncle Fester’… bouw een Dim Bulb Tester
De “trigger stroom” kan dan grofweg worden ingesteld door een andere gloeilamp te gebruiken, of als je het vaker doet, een plank te maken met een aantal gloeilampen en schakelaars.
Deze methode was vroeger best populair bij reparateurs, hoe vaak het tegenwoordig nog gebruikt wordt weet ik niet, maar het is effectief en omdat het zo eenvoudig is, is het nog steeds aantrekkelijk.
Ook voor het testen en voor het eerst sinds lange tijd aansluiten van oude apparatuur is dit een must, of je gebruikt een Variac, in combinatie met een scheidingstrafo, maar een goedkope Dim Bulb Tester is ook prima, oude hardware met uitgedroogde elektrolytische condensatoren moeten even de “tijd” krijgen lees rustig kunnen wennen aan een belasting, dus langzaam laden met weinig vermogen maakt vaak het verschil tussen vuurwerk met blauwe rook en een misschien wel werkend apparaat.
Het schema
Schema Dim Bulb Tester met energie monitor Terry van Erp
Om de beste ervaringen te bieden, gebruiken wij technologieën zoals cookies om informatie over je apparaat op te slaan en/of te raadplegen. Door in te stemmen met deze technologieën kunnen wij gegevens zoals surfgedrag of unieke ID's op deze site verwerken. Als je geen toestemming geeft of uw toestemming intrekt, kan dit een nadelige invloed hebben op bepaalde functies en mogelijkheden.
Functioneel
Altijd actief
De technische opslag of toegang is strikt noodzakelijk voor het legitieme doel het gebruik mogelijk te maken van een specifieke dienst waarom de abonnee of gebruiker uitdrukkelijk heeft gevraagd, of met als enig doel de uitvoering van de transmissie van een communicatie over een elektronisch communicatienetwerk.
Voorkeuren
De technische opslag of toegang is noodzakelijk voor het legitieme doel voorkeuren op te slaan die niet door de abonnee of gebruiker zijn aangevraagd.
Statistieken
De technische opslag of toegang die uitsluitend voor statistische doeleinden wordt gebruikt.De technische opslag of toegang die uitsluitend wordt gebruikt voor anonieme statistische doeleinden. Zonder dagvaarding, vrijwillige naleving door je Internet Service Provider, of aanvullende gegevens van een derde partij, kan informatie die alleen voor dit doel wordt opgeslagen of opgehaald gewoonlijk niet worden gebruikt om je te identificeren.
Marketing
De technische opslag of toegang is nodig om gebruikersprofielen op te stellen voor het verzenden van reclame, of om de gebruiker op een site of over verschillende sites te volgen voor soortgelijke marketingdoeleinden.