• Tag Archieven ampère
  • Uitleg Accu’s

    De Afkortingen

    De afkortingen, dat is ook waar ik op zocht, dus die zetten we even bovenaan:

    • AGM is een diepontladingsaccu (deep-cycle accu)
    • Ah staat voor Ampère uur, een 45Ah(20h) accu kan bijvoorbeeld totaal 45Ah afgeven, gemeten over 20 uur
    • Ca/Ca zijn Accu’s met calcium in plaats van antimoon
    • CCA staat voor Cold Cranking Amps
    • MF staat voor onderhoudsvrij (Maintenance-Free)
    • PbSb/PbCa of kortweg Sb/Ca is een hybride accu
    • SLA (Sealed Lead Acid)
    • TPPL (Thin Plate Pure Lead)
    • VDS verwijst naar de (Duitse) certificering inzake veiligheid, met name brandveiligheid
    • VRLA (Valve Regulated Lead Acid)

    De Primaire cel

    In 1786 was wetenschappelijk onderzoeker Luigi Galvani bezig een kikker te ontleden. De kikker was opgehangen aan een koperen haak en telkens wanneer Galvani met zijn ijzeren mesje de kikkerpoot aanraakte, zag hij het kikkerpootje samentrekken. Galvani meende dat de energie die daarvoor nodig was, uit het dier zelf afkomstig was en noemde het ‘dierlijke electriciteit’.

    Zijn vriend en medewetenschapper Allessandro Volta was het niet met hem eens. Hij meende dat de elektriciteit werd veroorzaakt door twee verschillende metalen die met elkaar waren verbonden door een vochtig medium. Experimenten bevestigden zijn zienswijze en in 1797 construeerde Volta de eerste echte accu, de Zuil van Volta. Deze zuil bestaat uit negenenveertig paren van koperen en zinken plaatjes, die met tussenvoeging van in een zuur gedrenkte stukjes wollen stof op elkaar zijn gelegd. De zuilen zijn aan de onderkant door een koperen strip verbonden. Bij geleidende verbinding van de bovenkanten sluit de kring en gaat er een stroom lopen, die wordt onderhouden door het geleidelijk oplossen van zink in het zuur.

    In de Zuil van Volta wordt de elektriciteit opgewekt door een chemische reactie en de accu kan, eenmaal uitgeput, niet meer worden herladen. We spreken hier van een primaire cel.

    De Secundaire cel

    In de Zuil van Volta werd de elektriciteit opgewekt door een chemische reactie en de accu kon, eenmaal uitgeput, niet meer worden herladen. We noemen dit een primaire cel.

    In 1803 vervaardigde Johann Wilhelm Ritter een soort omgekeerde Zuil van Volta. De Zuil van Ritter bestond uit enkel koperen schijfjes, ook nu gescheiden door laagjes stof of karton, die met een zoutoplossing waren doorweekt. De Zuil van Ritter kon zelf geen stroom produceren, maar kon deze daarentegen wel opslaan. Dat noemen we een secundaire cel of accu(mulator)

    De stroom die nodig was om de (secundaire) zuil van Ritter te laden, kon alleen worden verkregen uit een primaire stroombron zoals de Zuil van Volta. Dat maakte Ritter’s ontdekking wel interessant, maar weinig geschikt voor praktische toepassing.
    Lees verder  Bericht ID 5592


  • Aneng 638 Smart multimeter

    Model 683 van Aneng hoort bij de allernieuwste generatie handheld multimeters die volledig op een smartphone lijken en op dezelfde manier worden bediend, namelijk via het touch-screen.

    Kennismaking met model 683 van Aneng

    Type, fabrikant en prijzen
    Vrijwel alle Chinese postorderbedrijven bieden deze multimeter aan als ‘model 683‘ van het merk Aneng. De prijzen variëren rond dertig euro. Op het moment van deze test betaalde u er bij Banggood € 26,30 en bij de goedkoopste aanbieder van AliExpress € 26,44 voor. Ons exemplaar werd gratis voor een test ter beschikking gesteld door Banggood.

    De voornaamste kenmerken van de Aneng-683

    Deze multimeter heeft als onderscheidend kenmerk dat hij is uitgerust met een net zo groot aanraakscherm als een smartphone en de vijf bedieningsknopjes dus niet als dusdanig aanwezig zijn, maar als pictogrammen op het scherm. Hij lijkt als twee druppels water op uw smartphone, het enige duidelijke verschil is dat deze meter veel dikker is dan een telefoon.
    Het display bevat de tegenwoordig standaard aanwezige twee numerieke en een analoge display’s. De numerieke display’s hebben vier digits en hebben een weergavebereik tot 5999, behalve voor het meten van frequenties waar het bereik uitgebreid is tot 9999.
    De meter wordt gevoed uit een ingebouwde 3,7 V lithium-accu met een capaciteit van 2.800 mAh. Deze accu kunt u opladen via een USB-C connector op de achterzijde uit een standaard 5 V adapter. Deze connector zit achter een min of meer spatwaterdicht klepje.
    De meter heet ‘smart‘ omdat hij zélf kan bepalen wat u wilt meten. Een leuke reclamekreet die echter niet helemaal klopt. Hij schakelt automatisch om tussen weerstand, spanning en stroom, maar voor het meten van condensatoren, frequenties en temperaturen moet u tóch zelf ingrijpen. Uiteraard wordt ook het bereik automatisch geselecteerd, dat kunt u zelfs niet eens meer handmatig kiezen.
    De meter wordt geleverd in een rode of zwarte rubberen beschermhoes en met een handig draagtasje.
    Lees verder  Bericht ID 5592


  • Voeding of labvoeding?

    Hobby-lab: voedingen
    Hobby-lab: voedingen

    Een beetje elektronica hobbyist moet eigenlijk wel een labvoeding hebben. Met een labvoeding kunnen schakelingen en losse elektronica gevoed worden met volledige controle over de voedingsspanning en de maximaal te leveren stroom (of stroombegrenzing). De voeding moet een regeling hebben voor de uitgangsspanning en een regeling voor de stroombegrenzing. Ook moet een labvoeding een schone ruisarme spanning produceren.

    In veel (web)winkels worden normale voedingen soms wel als labvoeding aangeboden. Maar deze hebben niet altijd een regeling voor de stroombegrenzing en soms zelfs ook niet een regeling voor de uitgangsspanning. Beide regelingen zijn echter belangrijk als je zelfbouwschakelingen veilig wil testen, zonder gelijk een paar Ampère door je schakeling te duwen als het eens mis gaat! Een echte labvoeding heeft deze regelingen dus wel.

    Labvoedingen heb je in alle vormen en maten. Veel modellen zijn uitgevoerd met één of meerdere transformatoren en de anderen zijn weer als schakelende voeding uitgevoerd. Er zijn modellen met analoge meters en modellen met digitale meters. De modellen met digitale meters heb je vervolgens ook weer in twee varianten; met of zonder microcontroller.

    Modellen zonder microcontroller zijn traditioneel instelbaar met potmeters en modellen met microcontroller zijn instelbaar met een keypad, en een rotary-encoder. Deze voedingen hebben over het algemeen ook het voordeel van enkele geheugenplaatsen om een paar veelgebruikte instellingen op te kunnen slaan om deze daarmee snel in te kunnen stellen. Modellen met microcontroller zijn soms ook nog wat accurater, omdat de microcontroller is betrokken bij het regelcircuit. Echt luxe modellen met microcontroller hebben zelfs een USB aansluiting om deze te verbinden en te kunnen bedienen met een computer.

    Wat hoe dan ook een labvoeding onderscheidt van een normale voeding, is de mogelijkheid tot het nauwkeurig instellen van een stroombegrenzing, naast natuurlijk de instelbare uitgangsspanning.

    CC (Constant Current)

    Is de ingestelde stroombegrenzing bereikt, dan gaat de voeding fungeren als een constante stroombron (Constant Current, C.C.). De stroom zal dan niet hoger worden dan de ingestelde waarde.

    Dat is handig als je bijvoorbeeld een accu wil opladen. Maar de meeste elektronici zullen deze functie voornamelijk gebruiken als stroombegrenzer om de aangesloten schakeling te beschermen tegen beschadiging als er per ongeluk wat misgaat in de schakeling. Of om überhaupt te kijken of een schakeling goed gebouwd of ontworpen is. Dat is allemaal Constant Current dus.

    Kenmerk: de voeding zal de uitgangsspanning zodanig omlaag regelen, zodat de stroom de ingestelde waarde niet zal gaan overschrijden. Een kenmerk van Constant Current mode is dat de voeding de uitgangsspanning regelt, maar de uitgangsstroom constant houdt.
    In Constant Current (C.C.) mode is de uitgangsstroom gestabiliseerd.
    Wil je geen Constant Current gebruiken, dan stel je de labvoeding simpelweg op de maximale C.C. stand in. Maar helemaal uitschakelen kan niet. De voeding kan immers niet méér leveren. De maximaal in te stellen C.C. waarde dient dan als beveiliging voor de voeding. Dat maakt een labvoeding robuust.

    CV (Constant Voltage)

    Als de ingestelde stroombegrenzing niet in werking treedt, dan staat de voeding in de normale “Constant Voltage, C.V.” mode. Dat omschakelen gaat automatisch, zolang je de ingestelde C.C. waarde maar niet overschrijdt. Hoeveel stroom de aangesloten schakeling ook opneemt, de voeding zal de uitgangsspanning altijd op de ingestelde waarde proberen te houden.
    In Constant Voltage (C.V.) mode is de uitgangsspanning gestabiliseerd.


  • Meettechniek: Meten met een multimeter – uitgebreide uitleg!

    Meten van spanning (volt)

    Je kan een multimeter gebruiken voor het meten van een zogenaamd spanningverschil, ook wel genoemd potentiaalverschil; Dit is een veel uitgevoerde meting in de elektrotechniek en elektronica. Een spanning kan worden gemeten met een multimeter of met een voltmeter. Een analoge voltmeter bestaat in beginsel uit een weekijzermeter of een draaispoelmeter voorzien van een voorschakelweerstand. De meting is dus in feite een meting van het magnetisch veld veroorzaakt door de elektrische stroom door een spoel. Volgens de Wet van Ohm (U = I · R) is de spanning U evenredig met de door de weerstand R lopende stroom I, en is de aanwijzing een maat voor de te meten spanningsverschillen. Het aansluiten van het meetinstrument dient de meting zo weinig mogelijk te beïnvloeden. Hiertoe moet de meter zo weinig mogelijk stroom aan het te bemeten spanningscircuit onttrekken. Hoe groter de weerstand van de meter, hoe beter; in het ideale geval is die oneindig groot. Tevens wordt dan het eigen verbruik van het meetinstrument gereduceerd. Een voltmeter moet ook parallel aangesloten worden op het betreffende onderdeel van de elektrische schakelingen. Men kan ook spanningen meten met een oscilloscoop. Dit instrument gebruikt de te meten spanning, na die eventueel versterkt te hebben, om een curve weer te geven die het verloop van de spanning in de tijd geeft. Het voordeel van een oscilloscoop is dat periodiek veranderlijke spanningen zichtbaar gemaakt kunnen worden.

    Hierbij een zeer uitgebreide video, die dieper ingaat op het meten van spanning met een digitale multimeter: Lees verder  Bericht ID 5592


  • Gelijk en wisselstroom

    Wisselspanning en gelijkspanning (gelijkstroom)

    Hernieuwbare energie en het milieu worden steeds belangrijker. De meeste elektrische energiebronnen produceren gelijkspanning (DC). De meest gebruikelijke vormen van opslag van elektrische energie werken ook met DC. En de meeste apparaten werken ook op gelijkspanning. DC installaties wijken op belangrijke punten af van AC-installaties (wisselspanning-installaties). Het ontwerpen, installeren en beheren van DC-installaties is nog geen gemeengoed.

    Begrippen

    Spanning, stroom, weerstand en vermogen

    Stroom loopt pas door een schakeling als er sprake is van spanning. Spanning komt pas tot stand wanneer er een weerstand is gevormd. Daarnaast moet stroom altijd in een kring lopen.
    Het filmpje laat zien waarom een stroom altijd in een kring moet lopen en wat het verschil is tussen een serie- en parallel schakeling.

    De verhouding tussen spanning stroom en weerstand is te berekenen d.m.v. de volgende formule: U (spanning) = I (stroom) x R (weerstand). Dit wordt ook wel de wet van Ohm genoemd. Daarnaast heb je nog het vermogen. Dit is een afgeleid deel van de stroom en spanning. Vermenigvuldig de spanning met stroom en je krijgt het vermogen in Watt. Lees verder  Bericht ID 5592


  • Stroom

    Elektrische stroom

    Elektrische stroom

    Elektrische stroom is het transport van elektrische lading. In een elektrisch netwerk vindt dit transport voornamelijk plaats door de beweging van elektronen door geleiders en halfgeleiders onder invloed van een potentiaalverschil. Ook de beweging van ionen in een elektrolyt of een plasma veroorzaken een elektrische stroom. In al deze gevallen vindt het ladingstransport plaats door de verplaatsing van ladingdragers. Daarnaast ontstaat ook een elektrische stroom als verandering van de elektrische flux, zoals tussen de platen van een condensator gedurende het laden en ontladen, zonder dat zich ladingsdragers verplaatsen.

    De sterkte van elektrische stroom wordt gemeten in ampère (A), als de hoeveelheid per tijdseenheid verplaatste lading, en wel in coulomb (C) per seconde (s): 1 A = 1 C/s.

    In verdunde gassen, elektrolytische oplossingen en gesmolten elektrolyten verplaatsen positieve en negatieve ionen zich in tegengestelde richtingen; in een metalen geleider bewegen de negatief geladen elektronen zich van de negatieve (elektronenoverschot) naar de positieve (elektronentekort) pool.

    Richting en sterkte

    Traditioneel wordt elektrische stroom uitgedrukt als de verplaatsing van positieve lading. Toen het bekend werd dat elektrische stroom doorgaans wordt veroorzaakt door elektronen die zich in tegengestelde richting verplaatsen, heeft men het elektron per definitie een negatieve lading toegekend. De oude definitie van stroomrichting bleef daardoor van kracht.

    Elektrische stroomsterkte wordt doorgaans weergegeven met de letter I (van intensiteit) en kan worden beschreven als verplaatsing van elektrische lading per tijdseenheid. Voor een stroom met constante sterkte is: Lees verder  Bericht ID 5592


  • Waar moet je op letten bij het kopen van een multimeter?

    Multimeter header

    Je wilt een multimeter kopen, maar wat is nu een goede multimeter voor jouw gebruik? In dit artikel daarom de belangrijkste punten waar je op moet letten om te kunnen beslissen welke multimeter je moet nemen.

    Autorange of manual range?

    Een multimeter met autorange, ofwel automatisch bereik, selecteerd automatisch de juiste range en geeft de waarde weer in de automatisch gekozen range op het beeldscherm. Bij een lage spanning geeft de display dus de meting in aan mV, bij een hogere spanning in V.
    Een multimeter met manual range, ofwel handmatig bereik, moet je zelf de knop draaien om de juiste range te selecteren. Autorange is dus makkelijker in het gebruik. Als je veel gebruik zal maken van je multimeter, dan is een Autorange multimeter dus aan te raden.

    Ranges (meetbereik)

    Lees verder  Bericht ID 5592


  • Voedingskabels versterker

    Voedingskabels van de juiste dikte zijn erg belangrijk:

    • Om versterker(s) hun maximaal vermogen te laten leveren.
    • Om defecten aan versterker(s) te voorkomen.

    Hoe dik moet de voedingskabel minimaal zijn?
    En welke zekeringen moet ik gebruiken?
    In 3 stappen kun je dat hier gaan bepalen. Hou wel rekening met het volgende:

    • Bij decimalen geen komma invullen maar een punt: 12.5
    • Er wordt gerekend met de soortelijke weerstand van koper bij 20 graden: 0,0178 ohm m/mm2
    • Carrosserie als massa = 2,5 mOhm, vergelijkbaar met een 35mm² kabel van 5 meter.
    • Maximaal spanningsverlies tot ca. 500mV is acceptabel, zekeringen en aansluitingen zelf geven ook nog extra overgangsweerstand en zijn niet meegerekend.

    Stap 1: Bereken totale opgenomen stroom
    Tel eerst het gebruikte continu (of RMS) uitgangsvermogen van alle kanalen per versterker bij elkaar op. En vul dat daarna hier in.
    Accuspanning (11 – 14.4V): Volt (punt, geen komma!)
    continu uitgangsvermogen [W] versterker klasse
    Versterker 1   AB D T
    Versterker 2   AB D T
    Versterker 3   AB D T
    Versterker 4   AB D T
    Versterker 5   AB D T
    Versterker 6   AB D T

    Stap 2: Berekenen de minimale doorsnede van de kabelMassa kabel of massa via de carosserie?carrosserie
    kabelDoorsnede kabel [mm2]:Stroom I [A]:Lengte [m]:

    Stap 3: Maximale waarde van de zekering bij gekozen kabeldoorsnede
    mm2 AWG Zekering [A]
    0,5 20 5
    0,75 18 7,5
    1 17 10
    1,5 15 15
    2,5 13 25
    4 11 30
    6 9 40
    8 8 50
    10 7 60
    16 5 80
    20 4 100
    25 3 125
    30 2 150
    50 0 200
    70 000 250
    95 0000 300

     


  • Vermogen berekenen

    Er is een eenvoudige formule voor het berekenen van het vermogen van een elektronisch apparaat. Wat je nodig hebt is de opgenomen stroom en de spanning van het apparaat, en daar is niet moeilijk achter te komen.
    vermogen berekenen

    De formule is: vermogen = stroom x spanning.
    Bepaal de stroom en spanning van het apparaat.

    Meestal vind je aan de onderkant of achterkant van het apparaat een sticker met informatie. Hierop staan stroom en spanning vermeld.

    • De spanning wordt vaak aangegeven met het woord ‘Voltage’ en de letter ‘V’.
    • Het getal bij de stroom is meestal kleiner dan het getal bij de spanning, en vaak wordt de stroom in decimalen vermeld. Achter het getal staat meestal de letter ‘A’.
    • Deze getallen geven het maximale aantal aan, niet per definitie de aantallen die gelden bij normaal gebruik. Het vermogen dat je uitrekent met behulp van deze getallen is dus waarschijnlijk hoger dan het daadwerkelijke vermogen.
    • Als we bijvoorbeeld op de sticker 10 ampère en 24 volt zien staan, dan is het opgenomen vermogen 240 watt (10 x 24 = 240).
    • Als je meer dan één apparaat gaat gebruiken binnen een circuit, tel dan de vermogens van de apparaten bij elkaar op om het totale vermogen te berekenen.
    • Als het maximale vermogen minder is dan de vermogens van de apparaten bij elkaar opgeteld, dan moet je de apparaten nooit tegelijkertijd gebruiken. Daar komt bij dat een opstartend apparaat gedurende korte tijd een hoger vermogen gebruikt dan berekend.
    • Zorg altijd dat het maximale vermogen van een groep ver boven de opgetelde apparaten blijft.

    Waarschuwing

    • Te veel apparaten op een groep zorgt ervoor dat alle apparaten iets minder zullen gebruiken. Er kan schade ontstaan aan de apparaten en ze kunnen ermee stoppen.
    • De berekening geeft slechts een benadering, als je het precieze verbruik van een apparaat wilt weten heb je een vermogensmeter nodig.
    • Deze berekening klopt niet voor een groot aantal apparaten. Als er bijvoorbeeld een motor in het apparaat zit is er een andere formule nodig.