• Categorie archieven ELECTRONICS DATA HANDBOOK
  • Transient I and E in LCR Circuits

    The formulas whhich follow may be used to closely
    approximate the growth and decay of current and
    voltage in circuits involving L, C and Rwhere    i  =  instantaneous current in amperes at any
    given time (t),
    E  =  potential in volts as designated,
    R  =  circuit resistance in ohms,
    C  =  capacitance in farads,
    L  =  inductance in henrys,
    V  =  steady state potential in volts,
    VC =   reactive volts across C,
    VL =   reactive volts across L,
    VR =   voltage across R,
             RC  =  time constant of RC circuit in seconds,
    L/R  =  time constant of RL circuit in seconds,
    t   =  any given time in seconds after switch
    is thrown,
    e   =  a constant, 2.718 (base of the natural
    system of logarithms),
    Sw  =  switchThe time constant is defined as the time in seconds
    for current or voltage to fall to 1/e or 36.8% of its initial
    value or to rise to (1 – 1/e) or approximately 63.2%
    of its final value.
    Charging a de-energized Capacitive Circuit Discharging an Energized Capacitive Circuit
    E  =  applied potential. E  =  potential to which C is
    charged prior to closing Sw.
    Voltage is Applied to a De-energized Inductive Circuit An Energized Inductive Circuit is Short Circuited
    E  =  applied potential. E  =  counter potential induced in coil when
    Sw is closed.


    Steady State Current Flow

    In a Capacitive Circuit In an Inductive Circuit
       In a capacitive circuit, where resistance loss components
    may be considered as negligible, the flow of current at a given
    alternating potential of constant frequency, is expressed by
       In an Inductive circuit, where inherent resistance and
    capacitance components may be so low as to be negligible,
    the flow of current at a given alternating potential of a
    constant frequency, is expressed by
    where I
    XC
    E
    =
    =
    =
    current in amperes,
    capacitive reactance of the circuit in ohms,
    applied potential in volts.
    where I
    XL
    E
    =
    =
    =
    current in amperes,
    Inductive reactance of the circuit in ohms,
    applied potential in volts.

     


  • Most Used Formulas

    Resistance Formulas DIELECTRIC CONSTANTS
    In series 
    In parallel 

    Two resistors
    in parallel
    Kind of                                                Approximate*
    Dielectric                                                K Value

    Air (at atmospheric pressure) ………………..
    Bakelite …………………………………………….
    Beeswax …………………………………………..
    Cambric (varnished) ……………………………
    Fibre (Red) ……………………………………….
    Glass (window or flint) …………………………
    Gutta Percha ……………………………………..
    Mica ………………………………………………..
    Paraffin (solid) ……………………………………
    Paraffin Coated Paper …………………………
    Porcelain …………………………………………..
    Pyrex ……………………………………………….
    Quartz ………………………………………………
    Rubber ……………………………………………..
    Slate …………………………………………………
    Wood (very dry) …………………………………
    1.0
    5.0
    3.0
    4.0
    5.0
    8.0
    4.0
    6.0
    2.5
    3.5
    6.0
    4.5
    5.0
    3.0
    7.0
    5.0

    * These values are approximate, since true values
    depend upon quality or grade of material used, as
    well as moisture content, temperature and frequency
    characteristics of each

    Capacitance
    In parallel
    In series

    Two capacitors
    in series
    The Quantity of Electricity Stored Within a Capacitor is Given by Self-Inductance
               
    where   Q = the quantity stored in coulombs,
    E = the potential impressed across the
    capacitor in volts,
    C = capacitance in farads.
    In series 
    In parallel 

    Two inductors
    in parallel
    The Capacitance of a Parallel Plate
    Capacitor is Given by
    Coupled Inductance
               
    where   C = capacitance in mmfd.,
    K = dielectric constant,
    *S = area of one plate in square centimeters,
    N = number of plates,
    *d = thickness of the dielectric in centimeters
    (same as the distance between plates).*When S and d are given in inches, change
    constant 0.0885 to 0.224. Answer will still be
    in micromicrofarads.
    In series with fields aiding

    In series with fields opposing

    In parallel with fields aiding

    In parallel with fields opposing
    Coupled Inductance (cont.) Resonance (cont.)
      where      L<subt< sub=””></subt<> = the total inductance,

    M = the mutual inductance,

    L1 and L2 = the self inductance of                                                        the individual coils.

      where      F<subr< sub=””></subr<> = the resonant frequency
    in cycles per second,
    L = inductance in henrys,
    C = capacitance in farads,
    = 6.28,
    = 39.5,
    Mutual Inductance Reactance
       The mutual inductance of two r-f coils with fields
    interacting, is given by

    where    M = mutual inductance, expressed
    in same units as LA and LO,
    LA = Total inductance of coils
    L1 and L2 with fields aiding,
    LO = Total inductance of coils
    L1 and L2 with fields opposing,
      of an inductance is expressed by

    of an capacitance is expressed by

    where   XL =  inductive reactance in ohms,
    (known as positive reactance),
    XC =  capacitive reactance in ohms,
    (known as negative reactance),
    F  =  frequency in cycles per second,
    L  =  inductance in henrys,
    C  =  capacitance in farads,
    =  6.28,
    Coupling Coefficient Frequency from Wavelength
       When two r-f coils are inductively coupled so as to
    give transformer action, the coupling coefficient is
    expressed by,

    where    K  =  the coupling coefficient;
    (K x 102 = coupling
    coefficient in %),
    M  =  the mutual inductance value,
    L1 and L2  =  the self-inductance of the two coils
    respectively, both being expressed
    in the same units.

    where    =  wavelength in meters.
    where    =  wavelength in centimeters.
    Resonance Wavelength from Frequency
        The resonant frequency, or frequency at which
    inductive reactance XL equals capacitive reactance
    XC is expressed by

    also  
    and  

    where    F =  frequency in kilocycles.
    where    F =  frequency in megacycles.
    Q or Figure of Merit Impedance (cont.)
     of a simple reactor    In series circuits where phase angle and any two of the
    Z, R and X components are known, the unknown
    component may be determined from the expressions:
     of a single capacitor                 

                

      where Q  =  a ratio expressing the figure of
    merit,
      where Z  =  magnitude of impedance in ohms,
    XL  =  inductive reactance in ohms, R  =  resistance in ohms,
    XC  =  capacitive reactance in ohms, X  =  reactance (inductive or
    capacitive) in ohms,
    RL  =  resistance in ohms acting in series
    with inductance,
    Nomenclature
    RC  =  resistance in ohms acting in series
    with capacitance,
    Z  =  absolute or numerical value of
    impedance magnitude in ohms,
    Impedance R  =  resistance in ohms,
       In any a-c circuit where resistance and reactance
    values of the R, L and C components are given, the
    absolute or numerical magnitude of impedance and
    phase angle can be computed from the formulas
    which follow:
    XL  =  inductive reactance in ohms,
    XC  =  capacitive reactance in ohms,
    L  =  inductance in henrys,
    C  =  capacitance in farads,
       In general the basic formulas expressing total
    impedance are:
    RL  =  resistance in ohms acting in
    series with inductance,
     for series circuits, RC  =  resistance in ohms acting in
    series with capacitance,
           =  phase angle in degrees by which
    current leads voltage in a capacitive
    circuit, or lags voltage in an inductive
    circuit.  In a resonant circuit , where
    XL equals XC, equals 0o.


    for parallel circuits,
        
     Degrees X 0.0175 = radians.
    1 radian = 57.3o
       See page 17 for formulas involving impedance, conductance, susceptance and admittance. Numerical Magnitude of Impedance . . .
     of resistance alone
                               Z = R
                              = 0o
       
    of resistance in series,
    Z = R1 + R2 + R3etc.
    = 0o
       
    of inductance and capacitance in series,Z = XLXC
    = -90o when XL < XC
    = 0o when XL = XC
    = +90o when XL > XC
       
    of inductance alone
    Z = XL
    = +90o
       
    of inductance in series,
    Z = XL1 + XL2 + XL3etc.
    = +90o
       
    of resistance, inductance and capacitance in series

       
    of capacitance alone,
    Z = XC
    = -90o
       
    of resistance in parallel,

    = 0o
       
    of capacitance and resistance in parallel,
    Z = XC1 + XC2 + XC3etc.
    = -90o
       
    or where only 2 capacitances C1 and C2 are
    involved,

    = -90o
       
    of resistance in parallel,

    = 0o
       
    of resistance and inductance in series,

       
    of inductance in parallel,

    = +90o
       
    of resistance and capacitance in series,


    or where only 2 inductances L1 and L2 are involved,

       
    of inductance and capacitance in parallel,

       
    of capacitance in parallel


    or where only 2 capacitances C1 and C2 are involved,

       
    of inductance, resistance and capacitance in parallel,

       
    of resistance and inductance in parallel,

       
    of inductance and series resistance in parallel with
    capacitance,

       
    of capacitance and resistance in parallel,

       
    of capacitance and series resistance in parallel with
    inductance and series resistance,

    Conductance Admittance
      In direct current circuits, conductance is expressed
    by,

    where      G = conductance in mhos,
    R = resistance in ohms,
    In d-c circuits involving resistances R1, R2, R3, etc.
    in parallel,
    the total conductance is expressed by
    Gtotal = G1 + G2 + G3 …etc.
    and the total current by
    Itotal = E Gtotal
    and the amount of current in any single
    resistor,
    R2 for example, in a parallel group,
    by


    R, E and I in Ohm’s law formulas for d-c circuits
    may be expressed in terms of conductance as follows:
                     
    where      G  =  conductance in mhos,
    R  =  resistance in ohms,
    E  =  potential in volts,
    I  =  current in amperes,
      In an alternating current circuit, the admittance of a series
    circuit is expressed by,

    Admittance is also expressed as the reciprocal of
    impedance, or

    where      Y = admittance in mhos,
    R = resistance in ohms,
    X = reactance in ohms,
    Z = impedance in ohms,
    R and X in Terms of G and B
      Resistance and reactance may be expressed in terms
    of conductance and susceptance as follows:
               
    G, B, Y and Z in Parallel Circuits
    Susceptance   In any given a-c circuit containing a number of smaller
    parallel circuits only,

    the effective conductance GT is expressed by
    GT = G1 + G2 + G3etc.

    and the effective susceptance BT by
    BT = B1 + B2 + B3etc.

    and the effective admittance YT by

    and the effective impedance ZT by

    where       R  =  resistance in ohms,
    X  =  reactance (capacitive or induc-
    tive) in ohms,
    G  =  conductance in mhos,
    B  =  susceptance in mhos,
    Y  =  admittance in mhos,
    Z  =  impedance in ohms,


  • 70-Volt Loud-Speaker Matching Systems

    The EIA 70.7 volt constant voltage system of power
    distribution provides the engineer and technician with
    a simple means of matching a number of loudspeakers
    to an amplifier.   To use this method:
     Since the voltage at rated amplifier power is 70.7,
    this reduces to:
                         (2)
    1.  Determine the power required at each                 loudspeaker.

    2.  Add the power required for the individual
    speakers and select and amplifier with a rated
    power output equal to or greater than this total.

    3.  Select 70.7-volt transformer having primary
    wattage taps as determined in step 1.*

    4.  Wire the selected primaries in parallel across
    the 70.7-volt line

    From formula (2) these relationships are:
    1 watt requires 5000 ohm primary
    2 watt requires 2500 ohm primary
    5 watt requires 1000 ohm primary
    10 watt requires 500 ohm primary

    Once the primary taps have been determined,
    continue on through step 4 and 5 as outlined above.
    When selecting transformer primary taps, use the next
    highest available value above the computed value.  A
    mismatch of 25% is generally considered permissible.

    Example:  Required

    5. Connect each secondary to its speaker; selecting
    the tap which matches the voice coil inpedance.
      One 6 watt speaker with 4 ohm voice coil.
    Two 10 watt speakers with 8 ohm voice coils
    (use one transformer at this location).
         For transformers rated in impedance, the
    following formulas may be used to determine
    the proper taps in step 3.
      (1-2) Total power = 6 + 10 + 10 = 26 watts
    (use 30-watt amplifier or other amplifier
    capable of handling at least 26 watts).
      Primary         (Amplifier output voltage)2
    Impedance.       Desired speaker power
         (3)  ohms
    (use 1000 ohm transformer)
    ohms
    or                                             (1)
     *These transformers have the primary taps marked
    in watts and the secondaries marked in ohms.
       (4-5) See sketch below.

  • Minimum Loss Pads

    For Matching Two Impedances where Z1 > Z2 Matched, use a resistor , RL in series with the smaller
    impedance such that
    If the smaller impedance only is to be matched, use a
    resistor RS in shunt across the larger impedance such that
    Where Only One Impedance is to be Matched
    If the larger impedance only is to be Here also

    Tables of R1 and R 2 Values

    When Z1 is 600 ohms
    and Z2 is less than 600 ohms.

    Z2 500 400 300 250 200 150 100 75 50 40 30 25
    R1 245 346 424 458 490 520 548 561 575 580 585 587
    R2 1,225 694 425 328 245 173 110 80.2 52.2 41.4 30.8 25.6
    db
    Loss
    3.8 5.7 7.6 8.7 10.0 11.4 13.4 14.8 16.6 17.6 18.9 19.7

    When Z2 is less than 25 ohms,


    and      R2 = Z2         
    Where Z2 is 600 ohms
    and Z1 is greater than 600 ohms.

    Z1 800 1,000 1,200 1,500 2,000 2,500 3,000 3,500 4,000 5,000 6,000 8,000 10,000
    R1 400 632 849 1,162 1,673 2,180 2,683 3,186 3,688 4,690 5,692 7,694 9,695
    R2 1,200 949 849 775 717 688 671 659 651 638 633 624 619
    db
    Loss
    4.8 6.5 7.6 9.0 10.5 11.6 12.5 13.3 13.9 15.0 15.8 17.1 18.1

    When Z1 is greater than 10,000 ohms,

    let  R1 = Z 1 – 300
    and  R1 = 600
     


  • Constant Impedance Attenuators in Parallel

    Table of R1 Values in Ohms

    Z Number of Channels
    2 3 4 5 6
    30 10 15 18 20 21.5
    50 16.6 25 30 33.3 35.7
    150 50 75 90 100 107
    200 66.6 100 120 133 143
    250 83.3 125 150 166 179
    500 166 250 300 333 357
    600 200 300 360 400 428
    Network
    db loss
    6 9.5 12 14 15.5
    Insertion loss
    in db = 20 log10N
    Where ZL = identical line and load impedances;
    and N = number of channels in parallel.

     


  • Attenuator Networks

    For Insertion Between Equal Impedances

    For data covering networks between unequal impedances, see Minimum Loss Pads on page 10.
    See also Decibel-Voltage Current and Power Ratio Table on page 6.
    See table on page 7 for values of A, B, C, D, E used in the following attenuator network formulas.In case of L and U networks where only the input or output can be matched, as required, the matched side is
    indicated by an arrow pointing toward the pad. On all other networks, input and both the output circuits are matched.

  • Table of Values for Attenuator Network Formulas

    db Voltage or Current Ratio B C D E
    0.10 0.98855 0.011447 86.360 0.005756 86.857
    0.20 0.97724 0.022763 42.931 0.011512 43.426
    0.25 0.97163 0.028372 34.247 0.014390 34.739
    0.30 0.96605 0.034046 28.456 0.017268 28.947
    0.40 0.95499 0.045008 21.219 0.023022 21.707
    0.50 0.94406 0.055939 16.876 0.028774 17.362
    0.60 0.93325 0.066745 13.982 0.034525 14.428
    0.70 0.92257 0.077429 11.915 0.040274 12.395
    0.75 0.91728 0.082724 11.088 0.043147 11.567
    0.80 0.91201 0.087989 10.365 0.046019 10.842
    0.90 0.90157 0.098429 9.1596 0.051762 9.6337
    1.00 0.89125 0.108750 8.1955 0.057501 8.6667
    1.50 0.84140 0.158600 5.3050 0.086133 5.7619
    2.00 0.79433 0.205670 3.8621 0.11462 4.3048
    2.50 0.74989 0.250110 2.9983 0.14293 3.4268
    3.00 0.70795 0.292050 2.4240 0.17100 2.8385
    3.50 0.66834 0.331660 2.0152 0.19879 2.4158
    4.00 0.63096 0.369040 1.7097 0.22627 2.0966
    4.50 0.59566 0.404340 1.4732 0.25340 1.8465
    5.00 0.56234 0.437660 1.2849 0.28013 1.6448
    6.00 0.50119 0.498810 1.0048 0.33228 1.3386
    7.00 0.44668 0.553320 0.80728 0.38247 1.1160
    7.50 0.42170 0.578300 0.72920 0.40677 1.0258
    8.00 0.39811 0.601890 0.66143 0.43051 0.94617
    9.00 0.35481 0.645190 0.54994 0.47622 0.81183
    10.00 0.31623 0.683770 0.46248 0.51949 0.70273
    11.00 0.28184 0.718160 0.39244 0.56026 0.61231
    12.00 0.25119 0.748810 0.33545 0.59848 0.53621
    12.50 0.23714 0.762860 0.31085 0.61664 0.50253
    13.00 0.22387 0.776130 0.28845 0.63416 0.47137
    14.00 0.19953 0.800470 0.24926 0.66732 0.41560
    15.00 0.17783 0.822170 0.21629 0.69804 0.36727
    16.00 0.15849 0.841510 0.18834 0.72639 0.32515
    17.00 0.14125 0.858750 0.16449 0.75246 0.28826
    17.50 0.13335 0.866650 0.15387 0.76468 0.27153
    18.00 0.12589 0.874110 0.14402 0.77637 0.25584
    19.00 0.11220 0.887800 0.12638 0.79823 0.22726
    20.00 0.100000 0.900000 0.111111 0.81818 0.20202
    21.00 0.089125 0.910870 0.097846 0.83634 0.17968
    22.00 0.079433 0.920570 0.086287 0.85282 0.15987
    22.50 0.074989 0.925010 0.081069 0.86048 0.15083
    24.00 0.063096 0.936900 0.067345 0.88130 0.12670
    25.00 0.056234 0.943770 0.059585 0.89352 0.11283
    26.00 0.050119 0.949880 0.052763 0.90455 0.10049
    27.00 0.044668 0.955330 0.046757 0.91448 0.089515
    27.50 0.042170 0.957830 0.044026 0.91907 0.084490
    28.00 0.039811 0.960190 0.041416 0.92343 0.079748
    30.00 0.031623 0.968380 0.032655 0.93869 0.063309
    32.00 0.025119 0.974880 0.025766 0.95099 0.050269
    32.50 0.023714 0.976290 0.024290 0.95367 0.047454
    33.00 0.022387 0.977610 0.022900 0.95621 0.044797
    34.00 0.019953 0.980050 0.020359 0.96088 0.039921
    35.00 0.017783 0.982220 0.018105 0.96506 0.035577
    36.00 0.015849 0.984150 0.016104 0.96880 0.031706
    37.50 0.013335 0.986660 0.013515 0.97368 0.026675
    38.00 0.012589 0.987410 0.012750 0.97513 0.025183
    39.00 0.011220 0.988780 0.011348 0.97781 0.022443
    40.00 0.010000 0.990000 0.010101 0.98020 0.020002
    42.00 0.0079433 0.992060 0.0080069 0.98424 0.015888
    42.50 0.0074989 0.992500 0.0075556 0.98511 0.014999
    44.00 0.0063096 0.993690 0.0063496 0.98746 0.012620
    45.00 0.0056234 0.994380 0.0056552 0.98882 0.011247
    47.50 0.0042170 0.995780 0.0042348 0.99160 0.0084341
    48.00 0.0039811 0.996020 0.0039970 0.99207 0.0079623
    50.00 0.0031623 0.996840 0.0031723 0.99370 0.0063246
    51.00 0.0028184 0.997180 0.0028264 0.99438 0.0056368
    52.00 0.0025119 0.997490 0.0025182 0.99499 0.0050238
    54.00 0.0019953 0.998000 0.0019993 0.99602 0.0039905
    55.00 0.0017783 0.998220 0.0017815 0.99645 0.0035566
    56.00 0.0015849 0.998420 0.0015874 0.99684 0.0031698
    57.00 0.0014125 0.998590 0.0014145 0.99718 0.0028251
    60.00 0.0010000 0.999000 0.00100100 0.99800 0.0020000
    64.00 0.00063096 0.999370 0.00063136 0.99874 0.0012619
    65.00 0.00056234 0.999440 0.00056266 0.99888 0.0011247
    66.00 0.00050119 0.999500 0.00050144 0.99900 0.0010024
    68.00 0.00039811 0.999600 0.00039827 0.99200 0.0007962
    70.00 0.00031623 0.999680 0.00031633 0.99370 0.0006325
    72.00 0.00025119 0.999750 0.00025125 0.99500 0.0005024
    75.00 0.00017783 0.999820 0.00017786 0.99964 0.0003557
    76.00 0.00015849 0.999840 0.00015851 0.99968 0.0003170
    78.00 0.00012589 0.999870 0.00012591 0.99975 0.0002518
    80.00 0.00010000 0.999900 0.00010000 0.99980 0.0002000
    84.00 0.00006310 0.999940 0.00006310 0.99987 0.0001262
    85.00 0.00005623 0.999940 0.00005624 0.99989 0.0001125
    90.00 0.00003162 0.999970 0.00003162 0.99994 0.0000633
    95.00 0.00001778 0.999980 0.00001778 0.99996 0.0000356
    96.00 0.00001585 0.999980 0.00001585 0.99997 0.0000317
    100.00 0.00001000 0.999990 0.00001000 0.99998 0.0000200

  • Decibel – Voltage, Current and Power Ratio Table

    DB + DB +
    Voltage
    or
    Current
    Ratio
    Power
    Ratio
    Voltage
    or
    Current
    Ratio
    Power
    Ratio
    Voltage
    or
    Current
    Ratio
    Power
    Ratio
    Voltage
    or
    Current
    Ratio
    Power
    Ratio
    1.0000 1.0000 0 1.000 1.000 .4898 .2399 6.2 2.042 4.169
    .9886 .9772 .1 1.012 1.023 .4842 .2344 6.3 2.065 4.266
    .9772 .9550 .2 1.023 1.047 .4786 .2291 6.4 2.089 4.365
    .9661 .9333 .3 1.035 1.072 .4732 .2239 6.5 2.113 4.467
    .9550 .9120 .4 1.047 1.096 .4677 .2188 6.6 2.138 4.571
    .9441 .8913 .5 1.059 1.122 .4624 .2138 6.7 2.163 4.677
    .9333 .8710 .6 1.072 1.148 .4571 .2089 6.8 2.188 4.786
    .9226 .8511 .7 1.084 1.175 .4516 .2042 6.9 2.213 4.898
    .9120 .8318 .8 1.096 1.202 .4467 .1995 7.0 2.239 5.012
    .9016 .8128 .9 1.109 1.230 .4416 .1950 7.1 2.265 5.129
    .8913 .7943 1.0 1.122 1.259 .4365 .1905 7.2 2.291 5.248
    .8810 .7762 1.1 1.135 1.288 .4315 .1862 7.3 2.317 5.370
    .8710 .7586 1.2 1.148 1.318 .4266 .1820 7.4 2.344 5.495
    .8610 .7413 1.3 1.161 1.349 .4217 .1778 7.5 2.371 5.623
    .8511 .7244 1.4 1.175 1.380 .4169 .1738 7.6 2.399 5.754
    .8414 .7079 1.5 1.189 1.413 .4121 .1698 7.7 2.427 5.888
    .8318 .6918 1.6 1.202 1.445 .4074 .1660 7.8 2.455 6.026
    .8222 .6761 1.7 1.216 1.479 .4027 .1622 7.9 2.483 6.166
    .8128 .6607 1.8 1.230 1.514 .3981 .1585 8.0 2.512 6.310
    .8035 .6457 1.9 1.245 1.549 .3969 .1549 8.1 2.541 6.457
    .7943 .6310 2.0 1.259 1.585 .3890 .1514 8.2 2.570 6.607
    .7852 .6166 2.1 1.274 1.622 .3846 .1479 8.3 2.600 6.761
    .7762 .6026 2.2 1.288 1.660 .3802 .1445 8.4 2.630 6.918
    .7674 .5888 2.3 1.303 1.698 .3758 .1413 8.5 2.661 7.079
    .7586 .5754 2.4 1.318 1.738 .3715 .1380 8.6 2.692 7.244
    .7499 .5623 2.5 1.334 1.778 .3673 .1349 8.7 2.723 7.413
    .7413 .5495 2.6 1.349 1.820 .3631 .1318 8.8 2.754 7.586
    .7328 .5370 2.7 1.365 1.862 .3589 .1288 8.9 2.786 7.762
    .7244 .5248 2.8 1.380 1.905 .3548 .1259 9.0 2.818 7.943
    .7161 .5129 2.9 1.396 1.950 .3508 .1230 9.1 2.851 8.128
    .7079 .5012 3.0 1.413 1.995 .3467 .1202 9.2 2.884 8.318
    .6998 .4898 3.1 1.429 2.042 .3428 .1175 9.3 2.917 8.511
    .6918 .4786 3.2 1.445 2.089 .3388 .1148 9.4 2.951 8.710
    .6839 .4677 3.3 1.462 2.138 .3350 .1122 9.5 2.985 8.913
    .6761 .4571 3.4 1.479 2.188 .3311 .1096 9.6 3.020 9.120
    .6683 .4467 3.5 1.496 2.239 .3273 .1072 9.7 3.055 9.333
    .6607 .4365 3.6 1.514 2.291 .3236 .1047 9.8 3.090 9.550
    .6531 .4266 3.7 1.531 2.344 .3199 .1023 9.9 3.126 9.772
    .6457 .4169 3.8 1.549 2.399 .3162 .1000 10.0 3.162 10.000
    .6383 .4074 3.9 1.567 2.455 .2985 .08913 10.5 3.350 11.22
    .6310 .3981 4.0 1.585 2.512 .2818 .07943 11.0 3.548 12.59
    .6237 .3890 4.1 1.603 2.570 .2661 .07079 11.5 3.758 14.13
    .6166 .3802 4.2 1.622 2.630 .2512 .06310 12.0 3.981 15.85
    .6095 .3715 4.3 1.641 2.692 .2371 .05623 12.5 4.217 17.78
    .6026 .3631 4.4 1.660 2.754 .2239 .05012 13.0 4.467 19.95
    .5957 .3548 4.5 1.679 2.818 .2113 .04467 13.5 4.732 22.39
    .5888 .3467 4.6 1.698 2.884 .1995 .03981 14.0 5.012 25.12
    .5821 .3388 4.7 1.718 2.951 .1884 .03548 14.5 5.309 28.18
    .5754 .3311 4.8 1.738 3.020 .1778 .03162 15.0 5.623 31.62
    .5689 .3236 4.9 1.758 3.090 .1585 .02512 16.0 6.310 39.81
    .5623 .3162 5.0 1.778 3.162 .1413 .01995 17.0 7.079 50.12
    .5559 .3090 5.1 1.799 3.236 .1259 .01585 18.0 7.943 63.10
    .5495 .3020 5.2 1.820 3.311 .1122 .01259 19.0 8.913 79.43
    .5433 .2951 5.3 1.841 3.388 .1000 .01000 20.0 10.000 100.00
    .5370 .2884 5.4 1.862 3.467 .03162 .00100 30.0 31.62 1,000.00
    .5309 .2818 5.5 1.884 3.548 .01 .00010 40.0 100.00 10,000.00
    .5248 .2754 5.6 1.905 3.631 .003162 .00001 50.0 316.20 10 e5
    .5188 .2692 5.7 1.928 3.715 .001 10 e-6 60.0 1,000.00 10 e6
    .5129 .2630 5.8 1.950 3.802 .0003162 10 e-7 70.0 3,162.00 10 e7
    .5070 .2570 5.9 1.972 3.890 .0001 10 e-8 80.0 10,000.00 10 e8
    .5012 .2512 6.0 1.995 3.931 .00003162 10 e-9 90.0 31,620.00 10 e9
    .4955 .2455 6.1 2.018 4.074 10 e-5 10 e-10 100.0 10 e5 10 e10

  • Decibels

    The number of dB by which two power outputs P1 and P2 (in Watts) may differ, is expressed by

    or in terms of volts,

    or in current,

    while power ratios are independent of source and load impedance values, voltage and current ratios in these formulas hold true only when Z1 and Z2 are equal. In circuits where these impedances differ, voltage and current ratios are expressed by,

    or,

    dB Expressed in Watts & Volts

    dB*

    Above Zero Level

    Below Zero Level

    Watts

    Volts

    Watts

    Volts

    0

    0.0010

    0.775

    0.001000

    0.7746

    1

    0.0013

    0.869

    0.000794

    0.6904

    2

    0.0016

    0.975

    0.000631

    0.6153

    3

    0.0020

    1.094

    0.000501

    0.5483

    4

    0.0025

    1.227

    0.000398

    0.4888

    5

    0.0032

    1.377

    0.000316

    0.4356

    6

    0.0040

    1.545

    0.000251

    0.3883

    7

    0.0050

    1.734

    0.000200

    0.3460

    8

    0.0063

    1.946

    0.000159

    0.3084

    9

    0.0079

    2.183

    0.000126

    0.2748

    10

    0.0100

    2.449

    0.000100

    0.2449

    11

    0.0126

    2.748

    0.0000794

    0.2183

    12

    0.0159

    3.084

    0.0000631

    0.1946

    13

    0.0200

    3.460

    0.0000501

    0.1734

    14

    0.0251

    3.882

    0.0000398

    0.1545

    15

    0.0316

    4.356

    0.0000316

    0.1377

    16

    0.0398

    4.888

    0.0000251

    0.1228

    17

    0.0501

    5.483

    0.0000200

    0.1095

    18

    0.0631

    6.153

    0.0000159

    0.0975

    19

    0.0794

    6.904

    0.0000126

    0.0869

    20

    0.1

    7.746

    1 x 10 e-5

    7.75 x 10 e -2

    30

    1.0

    24.493

    1 x 10 e-6

    2.45 x 10 e-2

    40

    10.0

    77.460

    1 x 10 e-7

    7.75 x 10 e-3

    50

    1 x 10 e +2

    244.93

    1 x 10 e-8

    2.45 x 10 e-3

    60

    1 x 10 e+3

    774.60

    1 x 10 e-9

    7.75 x 10 e-4

    70

    1 x 10 e+4

    2,449.0

    1 x 10 e-10

    2.45 x 10 e-4

    80

    1 x 10 e+5

    7,746.0

    1 x 10 e-11

    7.75 x 10 e-5

    90

    1 x 10 e+6

    24,493.0

    1 x 10 e-12

    2.45 x 10 e-5

    100

    1 x 10 e +7

    77,460.0

    1 x 10 e-13

    7.75 x 1- e-6