Trigonometric Relationships

In any right triangle, if we let
Ø = the acute angle formed by the hypotenuse and
the base leg,
ø = the acute angle formed by the hypotenuse and
the altitude leg,
H = the hypotenuse,
A = the side adjacent Ø and opposite ø,
O = the side opposite Ø and adjacent ø,
then sine of Ø = sin Ø = O/H
cosine of Ø = cos Ø = A/H
tangent of Ø = tan Ø = O/A
cosecant of Ø = csc Ø = H/O
secant of Ø = scc Ø = H/A
cotangent of Ø = cot Ø = A/O
also
sin Ø = cos ø csc Ø = sec ø
cos Ø = sin ø scc Ø = csc ø
tan Ø = cot ø cot Ø = tan ø
and
1/sin Ø = csc Ø 1/csc Ø = sin Ø
1/cos Ø = sec Ø 1/sec Ø = cos Ø
1/tan Ø = cot Ø 1/cot Ø = tan Ø
   The expression “arc sin” indicates, “the angle whose sine is”…;
like wise arc tan indicates, “the angle whose tangent is”…etc.
See formulas in table below
Known
Values
Formulas for determining Unknown Values of …
A O H Ø ø
A & O arc tan O/A arc tan A/O
A & H arc cos A/H arc sin A/H
A & Ø A tan Ø A/cos Ø 90° – Ø
A & ø A/tan ø A/sin ø 90° – ø
O & H arc sin O/H arc cos O/H
O & Ø O/tan Ø O/sin Ø 90° – Ø
O & ø O tan ø O/cos ø 90° – ø
H & Ø 90° – Ø
H & ø 90° – ø