

PS-B80

US Model

Free service manuals
Gratis schema's

Digitized by

www.freeservicemanuals.info

US Model
AEP Model
UK Model

STEREO TURNTABLE SYSTEM

SPECIFICATIONS

GENERAL

Power Requirements: 220, 240 V ac ~
adjustable, 50/60 Hz (UK model)
120, 220 V ac ~
adjustable, 50/60 Hz (AEP model)
120 V ac, 60 Hz (US model)

Power Consumption: 28 W (US model)
29 W (UK, AEP model)

Dimensions: Approx. 500 (w) x 175 (h) x 430 (d) mm
19³/₄ (w) x 7 (h) x 17 (d) inches
including projecting parts and controls

Weight: Approx. 15 kg, 33 lb 2 oz. (net)
Approx. 18.5 kg, 40 lb 13 oz.
(in shipping carton)

TURNTABLE

Platter: 32 cm (12⁵/₈ in.), aluminum-alloy diecast

Motor: DC servo-controlled linear BSL motor

Drive System: Direct drive, crystal lock control system

Speed: 33¹/₃ rpm, 45 rpm

Starting Characteristics: Comes to nominal speed within a 1/4 revolution
(33¹/₃ rpm)

Wow and Flutter: ±0.04% (DIN)
0.02% (WRMS)

Signal-to-Noise Ratio: 78 dB (DIN-B)

Speed Deviation: Within ± 0.002 %

Load Characteristics: 0% up to 230 g tracking force

Automatic System: Lead-in, return, reject, repeat,
record-size selection, zero balance,
anti-scating

TONEARM

Type: All-electric tonearm, universal

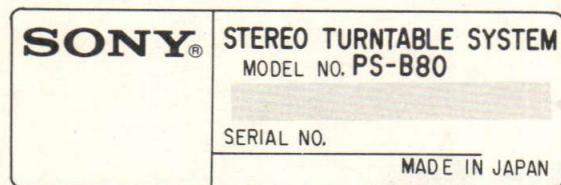
Pivot-to-Stylus Length: 235 mm (9¹/₄ inches)

Overall Arm Length: 325 mm (12³/₄ inches)

Overhang: 14 mm (9/16 inches)

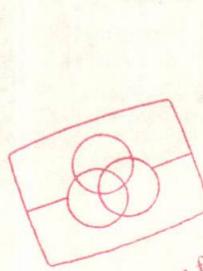
Tracking Error: +2° 27', -1° 30'

Stylus Force Adjustment Range: 0.5–3.0 g


Shell Weight: 11 g

Cartridge Weight Range: 12–21 g
(including shell)
21–30 g (with extra weight)

SAFETY-RELATED COMPONENT WARNING!!


COMPONENTS IDENTIFIED BY SHADING AND MARK
⚠ ON THE SCHEMATIC DIAGRAMS, EXPLODED
VIEWS AND IN THE PARTS LIST ARE CRITICAL TO
SAFE OPERATION. REPLACE THESE COMPONENTS
WITH SONY PARTS WHOSE PART NUMBERS APPEAR
AS SHOWN IN THIS MANUAL OR IN SUPPLEMENTS
PUBLISHED BY SONY.

SONY®
SERVICE MANUAL

MODEL IDENTIFICATION*— Specification Label —*

US model:
AC 120 V 60 Hz 28 W

UK, AEP model:
AC 110 – 120, 220 – 240 V ~ 50/60 Hz 29 W

Free service manuals
Gratis schema's

Digitized by

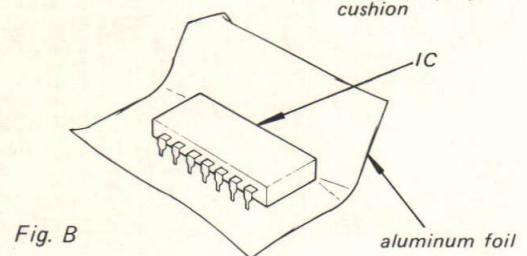
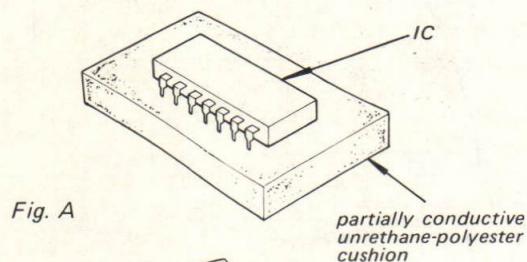
www.freeservicemanuals.info

SECTION 1

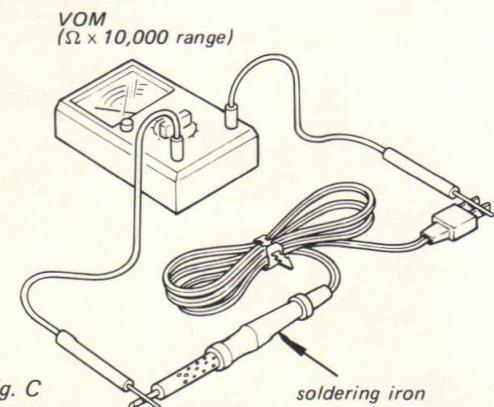
OUTLINE

1-1. Handling Precautions for MOS ICs (ICs 307 - 314, 411, 414 - 421)

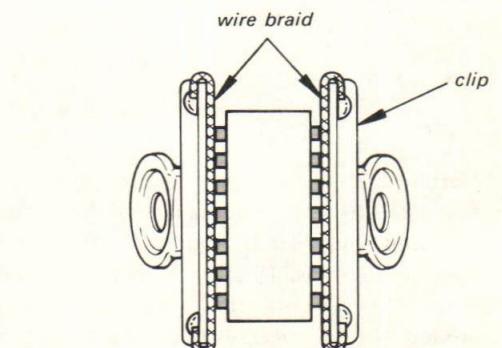
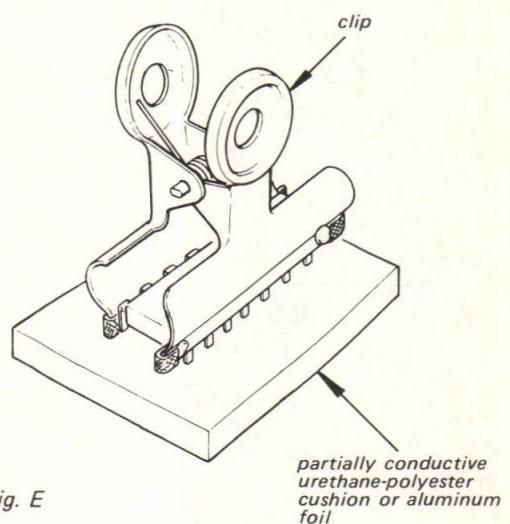
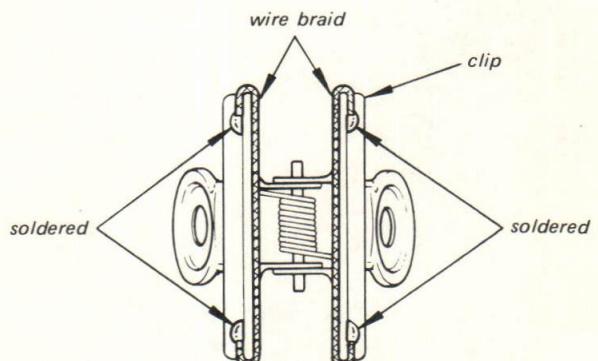
Generally, the insulation resistance of the oxide layer in MOS IC structures is very high, and the oxide layer is very thin. Because of this, it is possible that the static voltages usually present on clothes and the human body will be enough to generate a potential difference across the insulator, high enough to cause a breakdown of the insulating layer.



The following precautions should be taken while handling these ICs.

(Particular care should be taken under conditions of low humidity.)


Precautions in Replacing MOS ICs

1. Store new ICs by inserting them into a urethane-polyester cushion (which is somewhat conductive), or wrapping it in aluminum foil, so that all the pins are at the same potential.




(The ICs should be stored in that manner until mounted on the circuit board.)

2. Check the soldering iron for possible power-line leakage current. Make sure that there is no leakage path by connecting an ohmmeter to the tip of the soldering iron and the plug as shown in Fig. C. If there is a leakage path, use some other soldering iron.

3. Equalize any potential difference between the clothes, the tools in use, the work bench, the set being worked on, and the packaged IC by touching them all in succession with the hands or a conductive wire or tool.
4. The following are effective methods for handling ICs that remove the potential difference across the oxide layer.
 - Use a paper clip modified by soldering in a wire braid insert.

- Take a short length of fine bare wire and wind it around the IC so that it shorts all the pins of the IC, while it is still in the urethane-polyester cushion or aluminum foil. This ensures that all the pins are at the same potential.

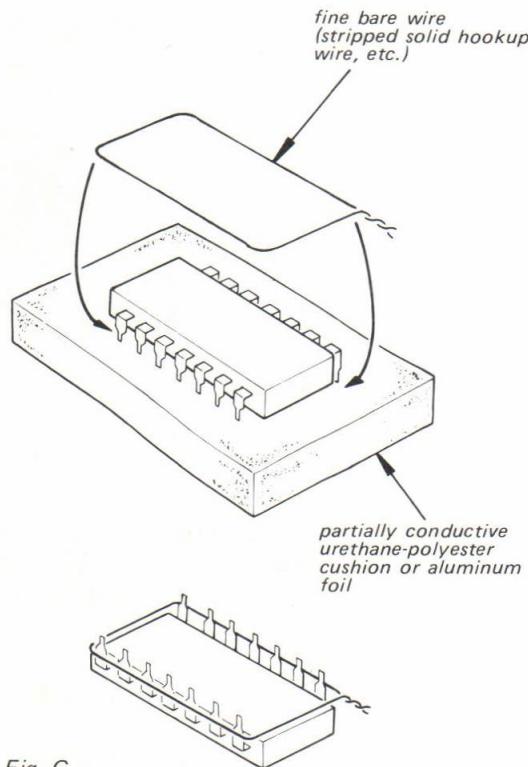


Fig. G

- When it is necessary to handle the IC with the fingers, do not touch any pin, and hold the IC at the ends of its plastic-package case as shown in Fig. H.

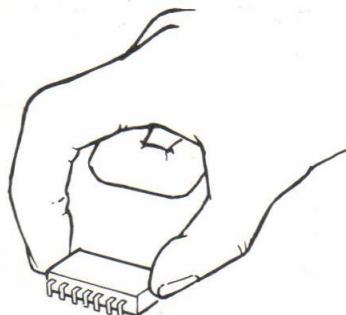


Fig. H

5. Method of Mounting

Insert the IC while holding it with the modified clip, and solder all the pins with the clip still shorting the pins. (Similarly, solder all the pins while the bare shorting wire is still wound around them.). Remove the clip or the bare shorting wire only after all the pins have been soldered.

Precaution while Checking C-MOS ICs

The C-MOS ICs (Complementary MOS) are MOS ICs that have their output sections made up of N-channel and P-channel push-pull stages to increase their speed of operation. If the output terminal of these ICs comes into contact with B+ or B- voltage, then the FET which is ON at that time will either become shorted or open.

This is valid for all the output sections that are connected together by the interconnections. Even the circuits that are physically separated (and not on the same board) can be destroyed simultaneously.

Example:

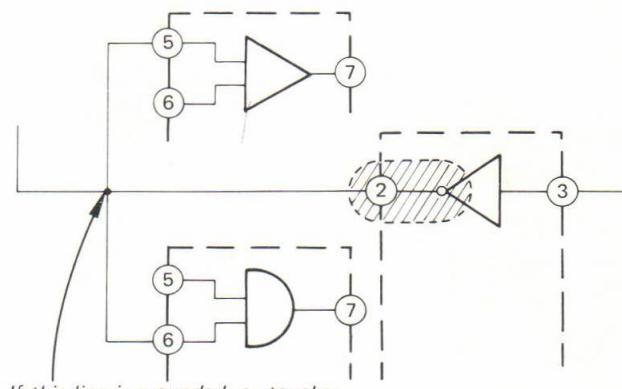


Fig. I

1-2. ELECTRONICALLY-CONTROLLED TONEARM "BIOTRACER"

1-2-1. Resonance Damping at Low Frequencies by Speed Feedback:

Tonearm vibration, particularly the resonance generated at low frequencies, is automatically reduced by feeding the speed fluctuation to the linear motor which monitors the speed of the tonearm.

1-2-2. Front-panel-controlled Auto Zero Balance and Stylus Force:

Zero balance is set automatically merely by fitting the cartridge and placing the tonearm on the tonearm rest. To set the stylus force, turn the knob on the front panel, and the built-in micro-computer will measure the force and display the results on the digital display. Changing of the stylus force while listening to the tones is also possible.

1-2-3. Automatic Anti-skating:

Using a non-contacting Angle-Detector System which reads off the angle of rotation of the tonearm by optical means, the correct value of rotational angle necessary to prevent skating can be estimated, knowing the position of the tonearm, and the anti-skating adjustment is carried out automatically.

1-2-4. Remote Full-Auto Function:

A luminar sensor controls the tonearm's lead-in and return, while monitoring of the down and returning positions is carried out by the linear motor. Accordingly, the operation is accurate and virtually silent.

1-2-5. Tonearm Lifter Control from Front Panel:

The up/down operation of the tonearm lifter is controlled by the vertical linear motor, and the damper, fitted with a speed feedback circuit, operates smoothly free from the effects of temperature change and aging. A muting circuit operates when the tonearm is in its top position and because this function is cancelled when the tonearm is down on the turntable, the bother of having to lower the amplifier volume every time the stylus has landed on the record is eliminated.

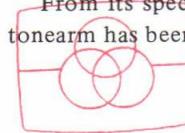
1-2-6. Fast Repeat Facility, Memory Repeat:

Repeat operation, controlled electronically by the horizontal linear motor, begins as soon as the tonearm returns to near the edge of a record. Further, if certain sections are required to be repeated,

this can be done by pre-setting the memory with the MEMORY LEAD IN and the REPEAT buttons.

1-2-7. Manual Operation with the Dust Cover in Place:

Manual operation is throughly possible without touching the tonearm, since the upward/downward and rightward/leftward movement of the tonearm can be done by buttons provided on the control panel.


1-2-8. Electronically-controlled Tonearm

This machine uses the electronically-controlled tonearm BIOTRACER. This tonearm contains a set of two linear motors, one for vertical drive and one for horizontal drive.

Examples of linear motors are already known in the form of such as dynamic speakers, pen recorders etc.

The linear motors consist of a coil placed in an electromagnetic field which is uniformly distributed. The coil is made to move back and forth along specific axis according to the strength of the current in the coil and the polarity. When the two linear motors are placed on different axes, the two units in operation make a multitude of functions possible when they work in combination.

From its special character, the linear-motor-driven tonearm has been given the name BIOTRACER.

Free service manuals
Gratis schema's

Digitized by

1) BIOTRACER Structure

Usually, the tonearm has two turning pivots, one for horizontal and one for vertical. BIOTRACER has two linear-motor configurations, independent of each other, in the places of the two pivots as shown in Fig. 1. The operation of these two linear motors differs in that one operates in a vertical plane and the other in a horizontal plane, but their operational principles are exactly the same. They operate according to the principle embodied in Fleming's left-hand rule whereby, as in Fig. 2, when the current flows in the coil within the electromagnetic field. The force is produced at right angles to the direction of the magnetic flux and the current flow. Accordingly, the tonearm can be maneuvered freely by controlling the current flow.

In order to send instruction signals to the unidirectional linear motors, first the operation of the tonearm must be checked. So, a speed sensor as shown in Fig. 3 has been attached separately both to the above of the horizontal rotating axis corresponding to the fixed side of the horizontal linear motor, and to the top of the tonearm corresponding to the fixed side of the vertical linear motor.

A big feature of the above-mentioned tonearm is that separate driving device is installed on the two pivots, and if so arranged, the system can be controlled by the instructions from the control circuits. Also the tonearm can be connected directly to the servo circuit as well as the turntable motor.

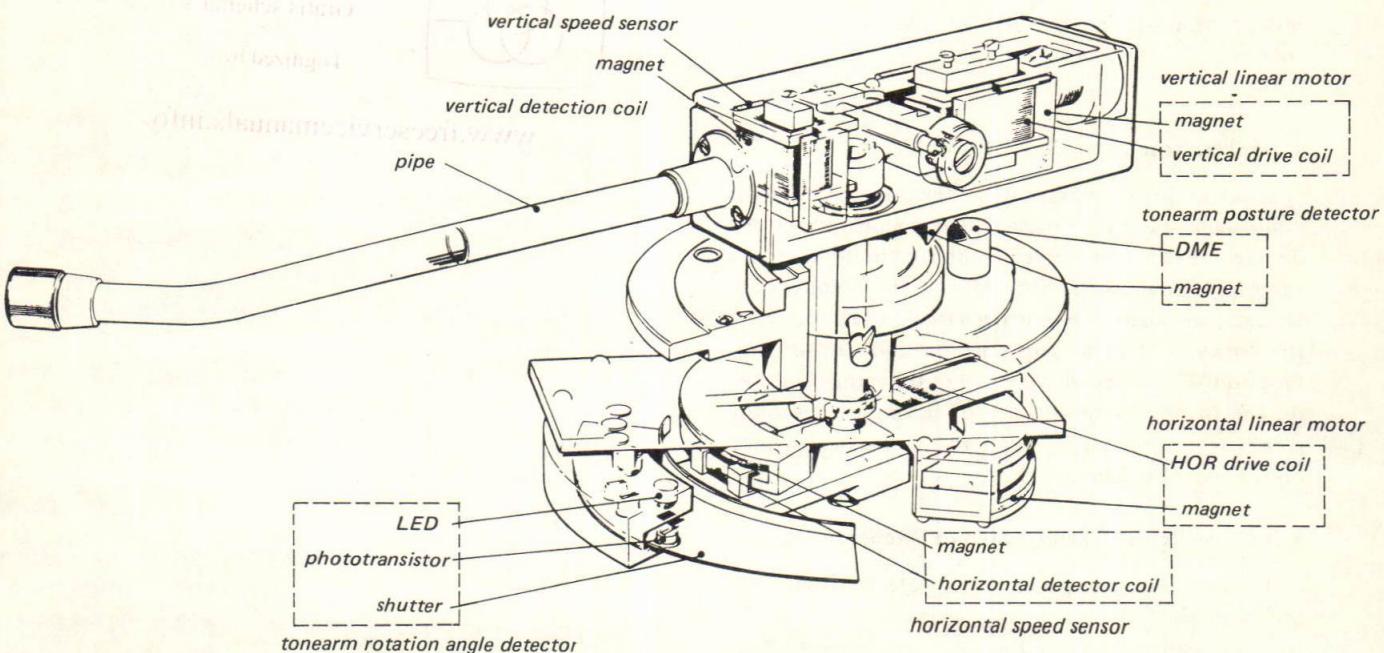


Fig. 1

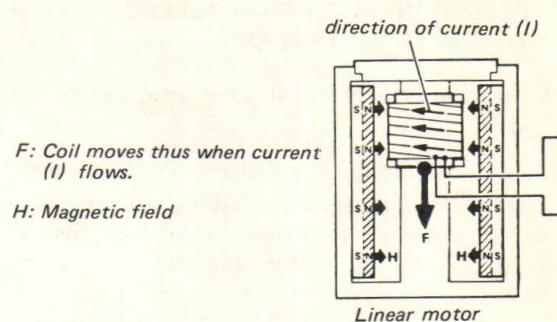
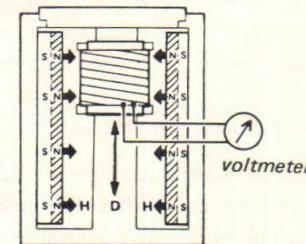



Fig. 2

SPEED SENSOR LAYOUT

D: coil movement direction

Fig. 3

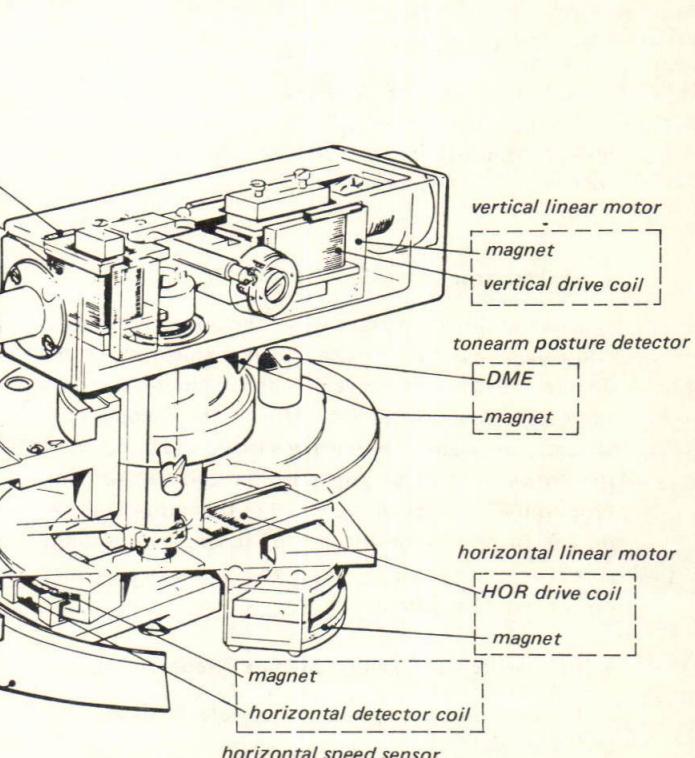


Fig. 2

2) Polarity of the Linear Motors and the Sensors

The linear motors and the sensors have polarities. Looked at from the outside, the direction of movement is thought to be decided when a voltage of a certain polarity is applied. Polarity includes all the following factors:

- Direction of electromagnetic field.
- Direction of coil winding.
- Wire connections.

If all of them are in reversed polarity, the directions of the motors and sensors are also reversed. Among them, the direction of the coil winding does not change so, when carrying out repairs, maintain the necessary polarity in accordance with Fig. 4 and the mounting diagram.

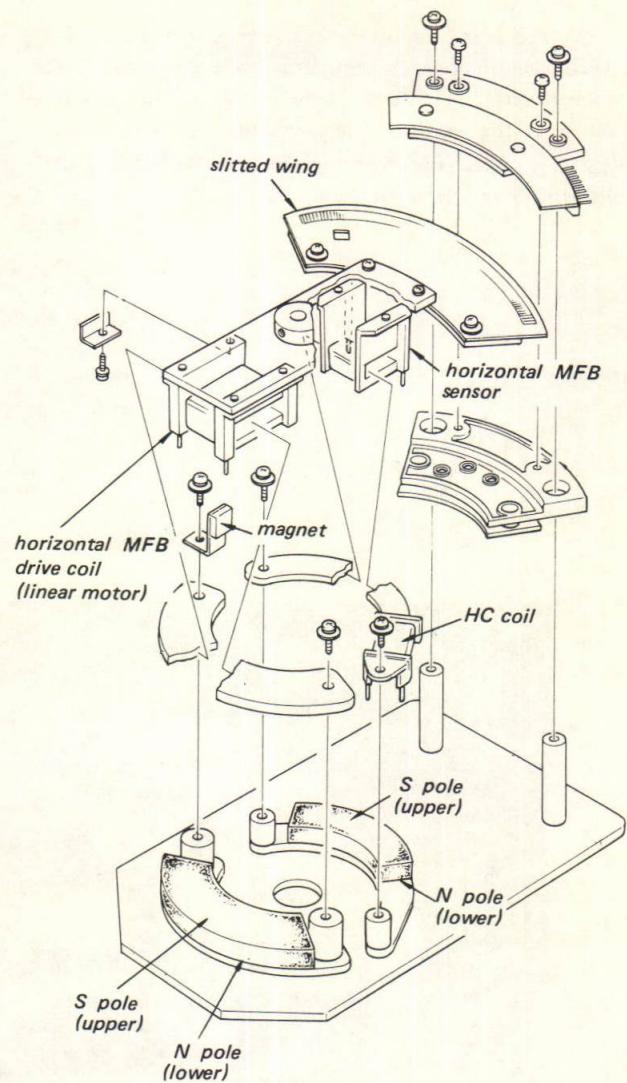


Fig. 4

3) Vertical Linear Motor

At the rear end of the tonearm is a linear motor (vertical) to move the tonearm up and down. The polarity of the magnet here is N at the outside, and S at the inside. The cover of this linear motor acts as a yoke. Fig. 5 shows the end of the tonearm with the cover removed.

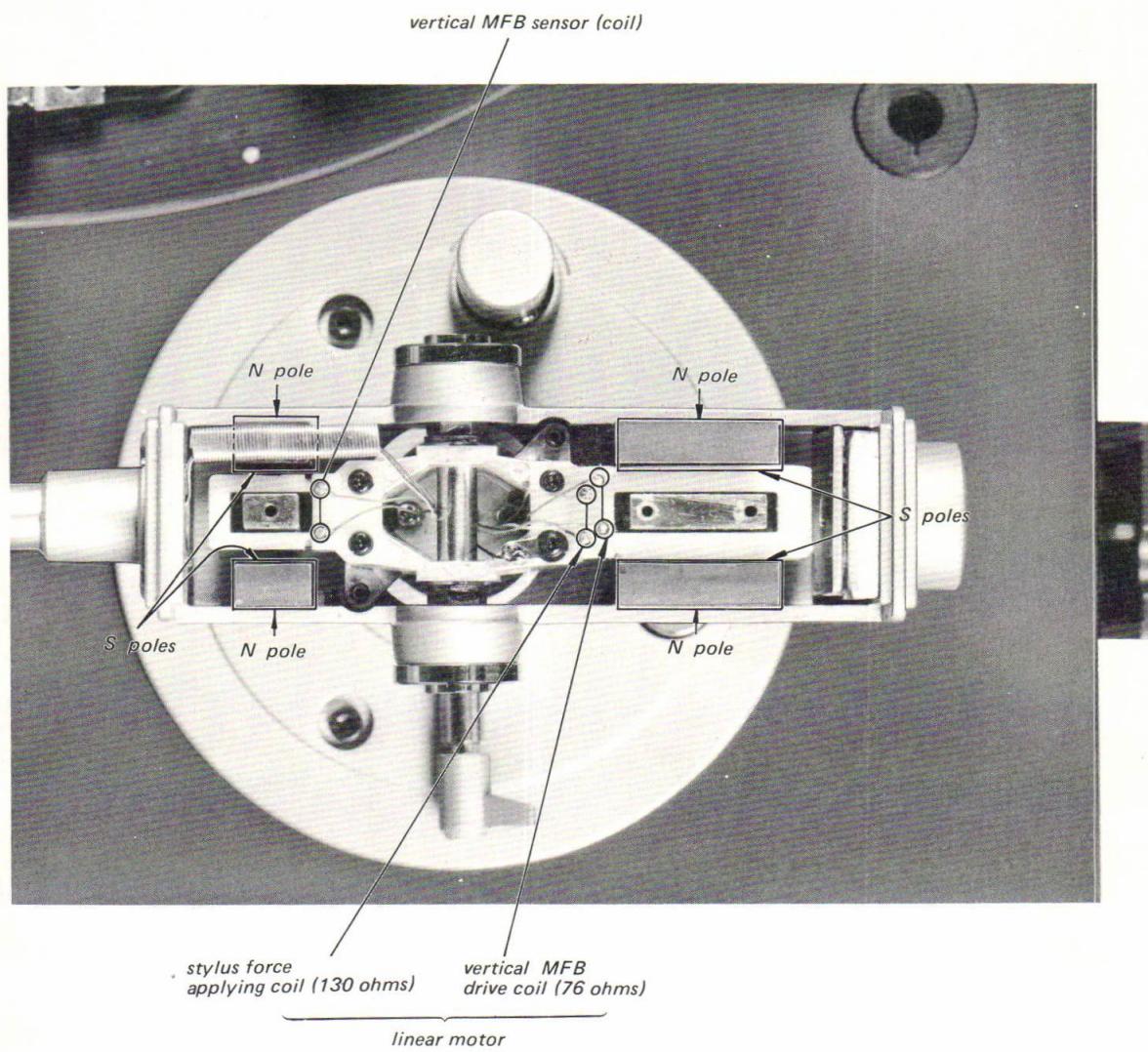
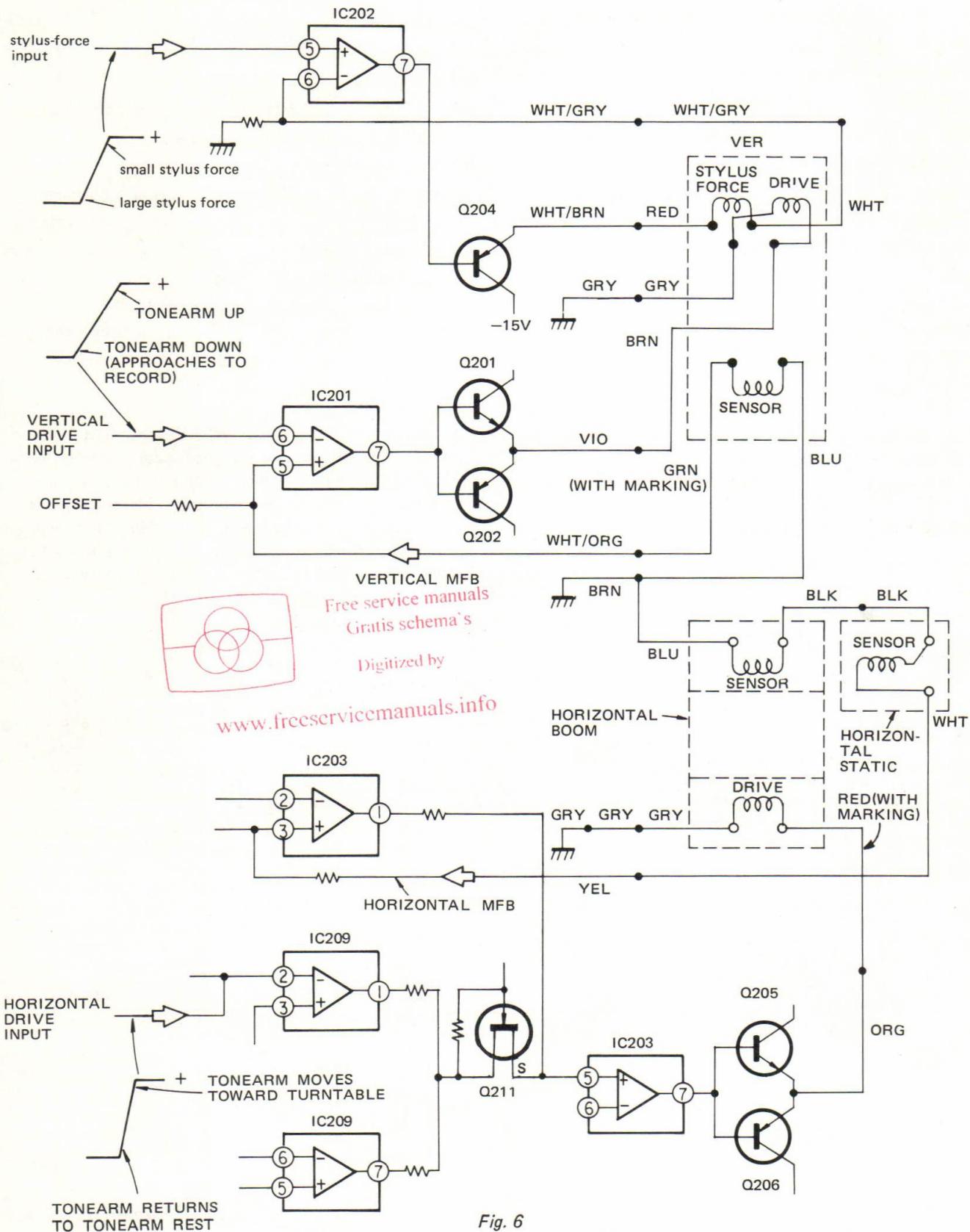



Fig. 5

4) Linear Motor and Its Circuit

1-3. TURNTABLE AND OTHERS

1-3-1. Automatic Record-size Detection Facility:

The size of records is monitored and measured by using a photo-electric device and a built-in micro-computer which then automatically puts the tonearm into operation.

1-3-2. Crystal-locked Magnedisc Servo System:

The turntable driving system employs the established magnedisc system known as a highly-accurate rotation monitoring and, a phase-locking using a precision output frequency generated by a crystal oscillator to obtain a constant turntable rotation with low drift.

1-3-3. Linear BSL Motor:

A smooth and silent rotation is obtained from the Linear BSL Motor — almost no cogging which can become a source of wow and flutter or S/N degradation. Having a high torqueage, the starting response is excellent at a quarter of a turn.

1-3-4. Turntable Incorporates Electromagnetic Brake:

Playing of records is easy due to the tonearm's independent operation and the simple start/stop operation of the turntable rotation, and a lead-in to a music is done very easily. Also, with the electromagnetic brake, stopping the turntable is smooth and quick as well as simple to use.

1-3-5. Stylus Cleaner:

Perfect sound can always be enjoyed since the stylus can be cleaned automatically at the mere press of the CLEANER button.

1-4. ABOUT THE CPU (MB8841)

The MB8841 is a four bit, one-chip microcomputer. One chip means that a combination of all the necessary parts that make up a microcomputer are built into one IC. It contains:

- ROM (Read Only Memory) for programming.
- Calculation Part (for data movement and data alteration)
- RAM (Random Access Memory) for temporary data storage.
- I/O (Inputs and Outputs)
- IRQ (External Break Input)

and so forth. Here we have named it CPU (Central Processing Unit) in the sense of its having central control.

1-4-1. Clock Oscillation:

Operation time of the CPU is based on twelve clock, divided into the reception time for receiving a given instruction (fetch) and the execution, six for reception and six for execution. The clock signal is made by a crystal oscillator XT401 connected between terminals 1 and 2 of the CPU (IC414). In this set, the oscillator's frequency is approximately 3.92MHz.

The CPU operates on a double-access system whereby the second instruction signals are received in the six clock periods during which the first instruction signal is executed. Looked at from the outside, one program process is digested in six clock steps.

If the clock oscillator's frequency is 3.92MHz, then the time taken for one command is:

$$3.92\text{MHz}/12 = 38.6\mu\text{sec.}$$

The execution is performed in every six clock at $3.92\text{MHz}/6 = 657,000$ steps/sec.

The input side for the clock oscillator is terminal 1.

1-4-2. I/O PORT:

In the sense that it is a port or harbor for the inputs and outputs, the I/O PORT is similar to the role a heliport plays for the helicopters.

The I/O Port consists of:

- Output-Only Ports P, O_H, O_L.
- Combined Input/Output Ports R₀, R₁, R₂, R₃.
- Input-Only Ports K, $\overline{\text{IRQ}}$

The ports apart from the \overline{IRQ} are to be handled as the binary code (parallel input/output word) of 16 variants (ϕ -F) composed of four bits of 0 and 1 each.

The Combined Input/Output Ports are a group which can be used either as inputs or outputs. If the input is connected, it can be used as "I" PORT, and if a load is connected, it is used as "O" PORT.

1-4-3. Weighting of Port Words

At one port, four bits are put into the input in succession and handled as one word unit at the output. A word is handled as ϕ -15 (F), the number which can be expressed with four bits.

The following weights are assigned to all the words:

P, O _H , O _L , R ₀ -R ₃ , K etc:	WEIGHT
15 11 7 3 MSB (most important weight)	8
14 10 6 2 2SB	4
13 9 5 1 3SB	2
12 8 4 0 LSB (lightest weight)	1

These are expressed in the text in the following way:

PORT P = E
 "E" is put out at PORT P
 PORT P = 1110
 1110 is put out at PORT P

"E" stands for "14" since $14 = 8+4+2$. . . thus, 1110 is put in and out. Moreover, when X is included as in 111X, the X part is unfixed, that is, an initial status.

1-4-4. Port Wordweight and Meanings

The set is divided into the section utilizing the existence of wordweight (wordweight usage), and the section which uses information in BITS (bit usage) which have nothing whatever to do with weighting.

Example 1: PORT R₀ = XX0X

R₁ = 0 . . . R₃, R₂, and R₀ are all X

R₁ = 0 turns the REPEAT lamp on and this is not affected by the conditions of R₃, R₂ and R₀.

This way of using the set is known as "bit usage".

Example 2: PORT O_H = B
 Then PORT O_L = 1111 \rightarrow 0001 \rightarrow 1111
 Then PORT O_H = 6
 Then PORT O_L = 1111 \rightarrow 0010 \rightarrow 1111

The PORT O operates according to the following timing, because this is an output with latch.

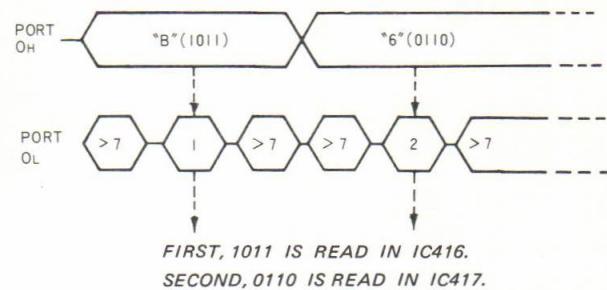


Fig. 7

Due to IC416 and 417 are composing a D/A converter of a total of 8 bits, the outputs of the upper IC416 and lower 417 changes into 1011 and 0110 respectively. This means that the next analog output is extracted.

$$\begin{aligned} 1011: 16 \times B(11) &= 176 \\ 0110: 6 + 176 &= 182 \end{aligned}$$

Because the total of 8 bits can be expressed from 0000 0000 to 1111 1111, or $2^8 = 256$ variants, this status handles a 4-bit word two times as a big word and its output is 182/256.

This way of using the set is known as "word usage".

1-4-5. Bit and Word in the CPU

In the CPU as noted above, the separate handling of bit and word differs from the software in the following manner:

To explain the previous example 1. in terms of 1101:

Internal Operation of CPU	PORT R _φ	Terminal	Outside of CPU
Previous status: PORT R _φ = 1111		R ₃ = 1	
Instruction 1: R BIT\$1		R ₂ = 1	
Execution: XXOX = 1101 (word F changes to D and moves)	F → D	R ₁ = 0 ...	REPEAT lamp lights up
Instruction 2: OUT PORT R _φ		R _φ = 1	
Execution: R _φ = 1101 (word F changes to D and moves).			
Note: R BIT\$1 is for resetting the first bit within the series φ, 1, 2, 3.			
Inside the CPU, words are used		In the software (outside of CPU), bits are used	
This is a program for bit usage. In other words, PORT R _φ = D.			

1-4-6. Explanation of Each Port

1) Port P

This is an output-only port and all the bits are normally reset to "1". The outputs have a latching function and are maintained as they are until they change when once they have been indicated.

The port P is the power source for the function key. The key (function button) which is connected to the bit "φ" of this port applies an effective input to the port K.

2) Port K

This is an input-only port. Just before the CPU reads the inputs, all bits are set to "1" and this port finds out whether the "φ" of port P is coming in as a parallel-word input by pressing a function button.

3) Port O_H

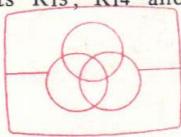
The output-only port. By combining with the port O_L, the output for one word from this port is divided into 16 variants (six in this machine). Normally all the outputs are reset to "1", output is maintained by the latch until the status is changed.

The port O_H operates under the word usage (D/A) or the bit usage (all others). Used as the data port of the port O in conjunction with the port O_L.

4) Port O_L

An output-only port. The output in conjunction with the port O_H, indicates the locations the data of the port O_H should go and it is normally reset to "1" and with latch signal.

5) Ports R_ϕ and R_1


A combined input/output port. However, in this machine this is used as an output port. The outputs are also with latch.

6) Port R_2

An input/output port. Used as an input port in this machine. All the input terminals are set to "1" just before the CPU checks the inputs, then all the inputs are checked if they are "0" or "1". The output is maintained by an external circuit till the CPU reads off, due to there being no latch for the input while the output being set is latched.

7) Port R_3

A combined input/output port. Normally, all the bits are reset to "1". R_{12} is a latched output for muting. The rests R_{13} , R_{14} and R_{15} are for inputs.

Free service manual
Gratis schema's

Digitized by

www.freeservicemanuals.info

8) RESET Input:

When RESET=0, the CPU is reset, and the terminals other than the special IRQ are all reset at "1". IRQ is reset to "1" when the POWER is switched on.

9) IRQ Input:

External break input port. When reading the IRQ during internal execution of the program (ready: IRQ enable), the status of the break input together with the progress of the program is estimated according to whether the CPU will permit this external break and whether there is any break input or not. The corresponding output is corrected.

Ex: IRQ inhibited until the horizontal position of the tonearm comes to the tonearm rest.

When the tonearm has come to the tonearm rest, the IRQ is permitted, and according to whether the IRQ is "1" or " ϕ ", the CPU finds the inclining angle of the tonearm (UP/DOWN), and sets the tonearm's zero balance.

1-5. BEFORE ATTEMPTING THE REPAIR

All the programmed operations of this machine are handled by a four-bit microcomputer IC's memory. The Microcomputer chips are called as CPU (Central Processing Unit) and the IC in this set is IC414, MB8841-125.

Roughly 2000 program steps are included in this CPU. One step of this takes roughly 33.5 microsecs. to carry out. Thus in one second, five million nine hundred and sixty thousand steps are processed. If each step of a program were to be run through in successive steps, 2000 steps are processed in 3.35msecs, then in one second, the programs are handled 298 times.

However, the actual processing happens even faster because unnecessary programs are skipped along with the changes in set status.

If this micro changes are disregarded, the computerized set can be thought of in the following manner:

The inputs and outputs of a computerized set are normally connected. When repairing the set, do not think of this CPU as a industrial big computer, but merely as a jumper IC to which a little less than 20 leads for inputs and outputs are connected. In other words, it should be possible to repair the set either merely by checking the group of "inputs → leads labelled CPU → outputs" with a VOM or an oscilloscope.

1-5-1. On the Major Program

The major (macro) program is the complete set of operations. This is exactly the same set of operations to which those using manually-operated record players are accustomed. These are:

- 1) Remove the tonearm from the tonearm rest and set the zero balance.
- 2) Decide the stylus force.
- 3) Place a record on the turntable.
- 4) Start the motor.
- 5) Lead in the stylus by placing the tonearm lifter down on the lead-in groove.
- 6) When the music has finished, lift the tonearm and return it to the tonearm rest.
- 7) Switch off the motor.
- 8) When wishing to repeat the music, carry the tonearm to that portion of the record by hand.

A special feature of manual operation lies in the free order in which only the necessary operations may be carried out, and lies in the fact that one can freely carry out these operations, when a record has finished, without having to reset the zero balance to switch the motor on first and suchlike.

However, a computer cannot think things like this. For example, if we select a program where zero balance is unnecessary for the second record, if the cartridge is changed between the two records, the computer will not be able to set the zero balance for the second record. The reason why this difference exists is that humans are able to make decisions based on pattern recognition whereas computers carry out operations based on the programs and feed them to the program output terminals. In other words, the computers do not know anything of the software at the extension of the output terminals.

So, programs are all made in the correct order. However, humans can check immediately whether or not some error has been made – for example, when picking up a screwdriver, it is possible to check whether the hand has not adopted the necessary posture for the task.

From the above, it can be seen that macro operation consists of the two types:

- 1) When faults occur in the software in the unidirectional output routes, malfunction is restricted to that area alone.
For example, if there is a motor malfunction or something, the CPU will not know that the cleaner is faulty even if the motor-start instruction signal is put out, the CLEAR button is pressed and the tonearm is lowered.
- 2) If faults occur in the software where the output routes have feedback, the operation will cease immediately one step before the step where the fault has occurred. Or else it will stand by at the initial point of that routine. Repairs are most difficult in the later case.

Note: Ceasing operation here means that the CPU will be on Dynamic Standby, while retaining its program.

1-5-2. Repair of the Computerized Set

The following repairing methods are a general classification.

- 1) This method is to find out at what point the program has gone wrong by applying a diagnosis based on the situation to that judging point. Then proceed to the next step.
- 2) This method is to judge whether an operation is good or wrong by injecting a specific interfering signal even with which a program is processed normally.
- 3) This method is to check all the points (several hundred) simultaneously to which test probes are connected to see whether the programs are being processed in the CPU normally.
- 4) This method involves checking by returning to the initial status from a specified step of the program.
- 5) This method is to disconnect the CPU and to check the set by using a manual control.

1-6. REPARING

Repair the set according to the following methods (techniques):

Tools: Medium-wave radio (small) and earphone. This machine's microcomputer works on the 3.92MHz clock mentioned above. However, because the speed of execution is roughly $3.92/6=650\text{kHz}$ in the CPU and its environs compound pulses are generated dynamically centered around 650kHz.

First, remove the bottom plate of this machine and place the radio near the CPU. When the machine's power is switched on, the operating CPU is radiating compound AM, FM, PWM frequencies. It is not necessary to set the radio exactly on 650kHz, as any frequency which can be received will do.

Note: Take care not to cause shorts by the metal parts of the radio cabinet.

1-6-1. Procedure for Locating Faults:

- 1) Now, the sound received as noise indicates that the program is being executed.
- 2) If the incoming sound has a tone in it (a piiii-pi, piiii-pi sound for example), the program is being executed in the cycle of that tone.
- 3) Press the function button:
Even if the tone changes for an instant (including if it returns to the original tone afterwards), it means that the input circuit between that button and the CPU is normal.
If there is no change in the tone at all, it means the input circuit is faulty.
If the set should be operating but the incoming sound from the CPU is changing, then the output circuit is faulty.
- 4) The received tone should change as the process changes from one step (ex, zero balancing) to another (ex, when zero balancing is completed, the next input search). So, while the tonearm returns to the tonearm rest the received sound will something like zazza. . then the zero balance is set at a sound something like babbii. Having finished, the set is now ready for the next step. (suuun sound).
Thus, repairs to the microcomputer-equipped sets can be easily carried out by listening to these differences in sound of the incoming signal to a radio. It is equivalent to connecting remote probes to all of several-hundred necessary junctions and checking the composite frequency spectrum.

5) Examples of faults likely to occur:

- The sound does not change even when the tonearm is returned to the tonearm rest: No rest signal Around the tonearm rest detection circuit IC407 damaged up as far as the CPU.
- No change in sound when CLEANER button is pressed: Button (input) circuit faulty
- The sound changes when CLEANER button is pressed, but the brush motor does not rotate (trouble lies in the motor). CPU is operating so the motor circuit at its output must be faulty.

1-6-2. Note on Undertaking This Repairing Method:

Make sure to use the earphone. Although sets are generally sealed, static may interfere when the covers are removed for repairs, so use the earphone to avoid unnecessary interference.

1-6-3. Positioning of the Set when Repairing

On most players, checks on such as the printed circuit boards can be carried out by tipping the set over as far as it will go without the turntable falling off.

However, this machine is controlled at all times by the movements of the tonearm such as the starting after zero balance has been completed, cancellation of muting when the tonearm lands on a record, and the returning of the tonearm. So, for this machine the following methods of repair are generally applicable.

- 1) Remove the turntable.
- 2) Turn the set from the horizontal to the vertical position.

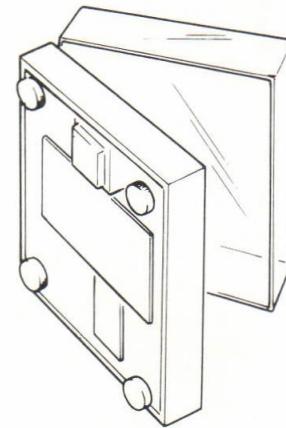


Fig. 8

- 3) Carry the tonearm by hand on to the tonearm rest and switch the POWER on. When the hand is released, the tonearm moves to the return region due to the weight of the rear portion of the tonearm.
- 4) When the POWER is on, slowly move and lay the tonearm in the horizontal position against the frame, and from there by slowly lowering to the frame, the zero balance will be set and the STAND BY lamp will turn off. Refer to Fig. 9.

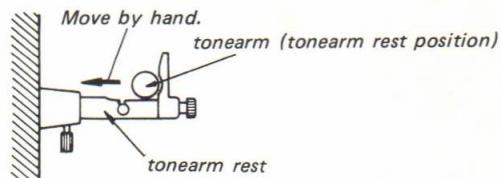


Fig. 9

5) Then, carry the tonearm by hand from the tonearm rest to the record area and as illustrated in Fig. 10, hang it in the air with a cellophane tape.

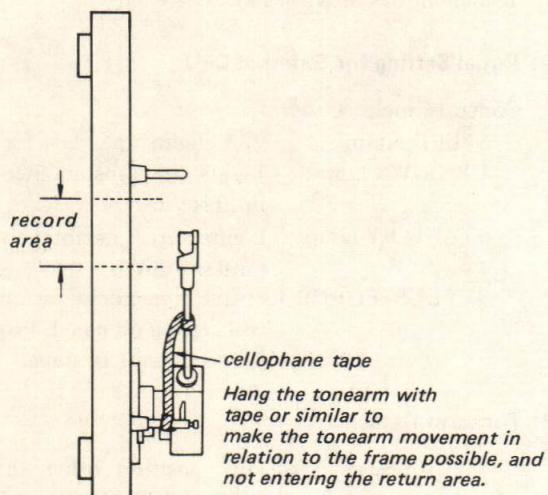


Fig. 10

6) In this position, the repair is possible even though the operation is imperfect.

But, since the imperfectness of the operation in this state, make sure to carry out the final checks and adjustments after the set has been placed back in the horizontal position and all repairs have been completed. Because the turntable has been removed, the rate of rotation will not be correct. After repairing, place the set in the horizontal position, and make the necessary adjustments with the turntable replaced.

1-7. CIRCUIT DESCRIPTION

1-7-1. When POWER is on

A reset pulse is generated at Q110 in the power-supply circuit and is routed to IC412. The polarity-reversed pulse RESET at the output of IC412 is applied to terminal 3 of the CPU. The CPU starts processing the program from the very first step when the RESET pulse turns off or resets to "1".

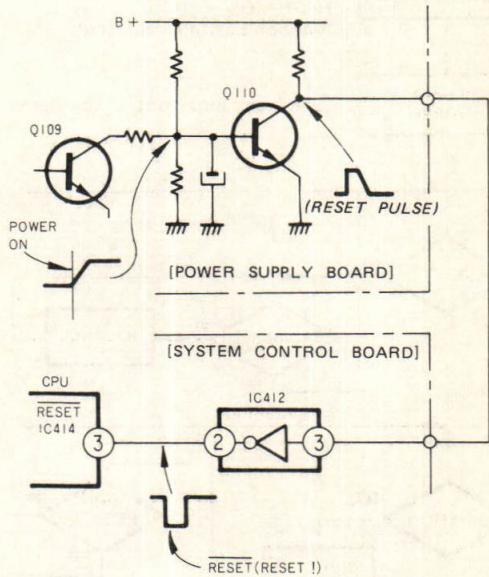
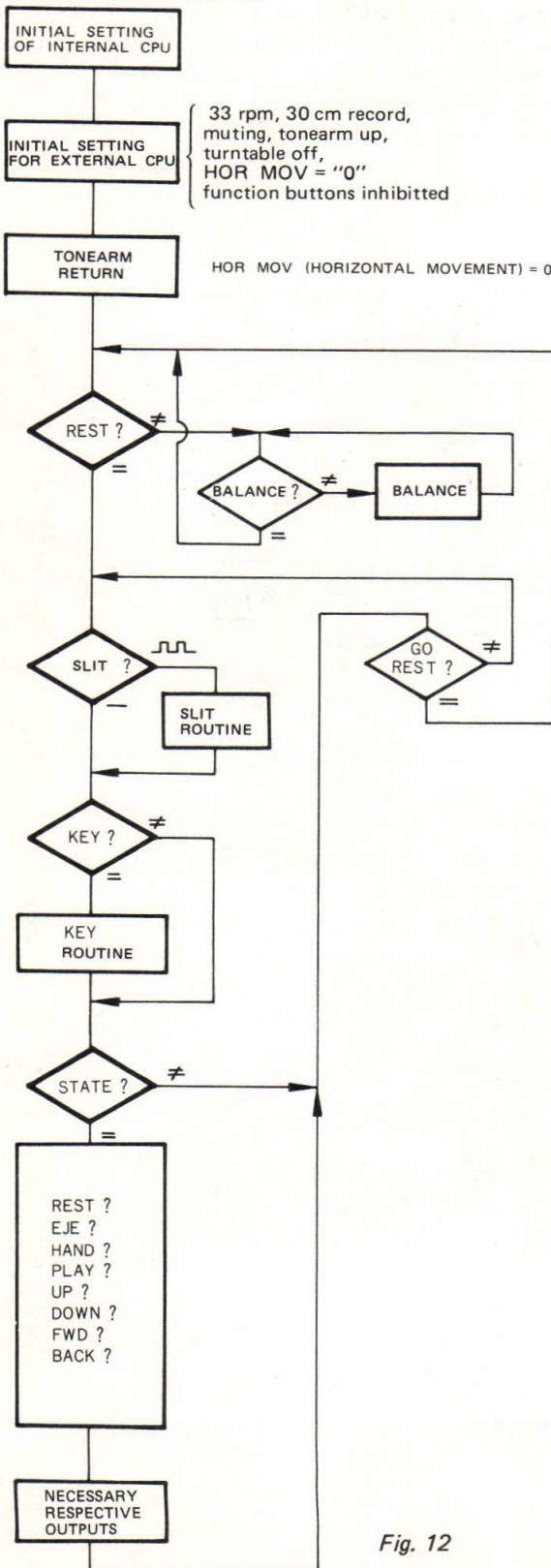



Fig. 11

1-7-2. Program

After starting processing the program, the CPU processes the program roughly in the following order.

—PROGRAM FLOWCHART—

1-7-3. Details of Operation

1) Initial Setting of Internal CPU

The memories of RAM in CPU are erased.

2) Initial Setting for External CPU

Control Panel:

- SPEED lamp: "33" lights up
- UP/DOWN lamp: Lights up (instantaneous until set up)
- STAND BY lamp: Lights up (instantaneous until set up)

STYLUS FORCE display: dependent on control setting on panel. From 0.5–3.0g in 0.1g steps.

3) Tonearm Return

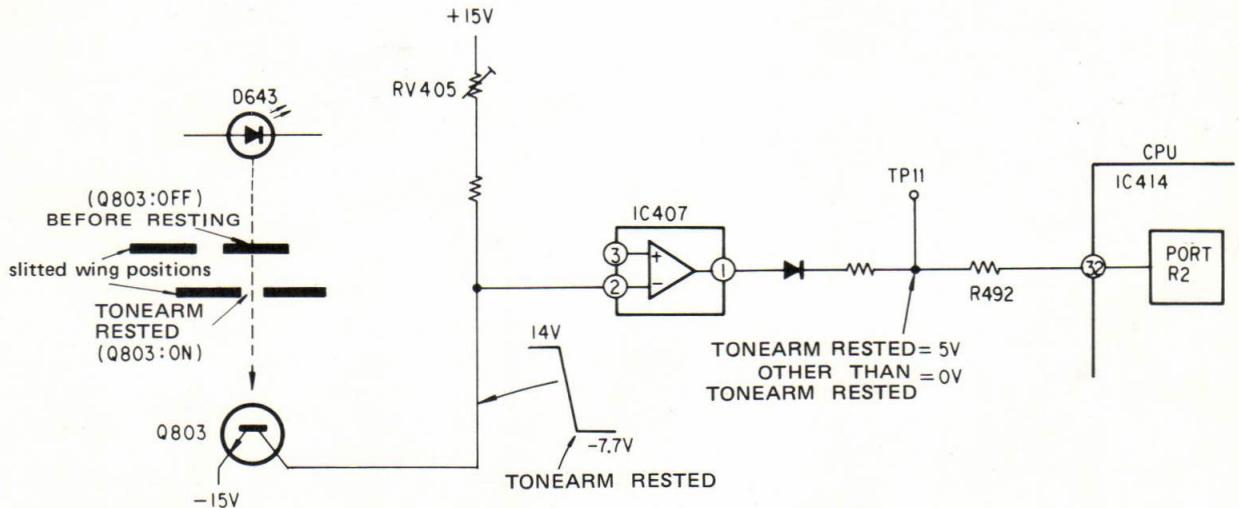
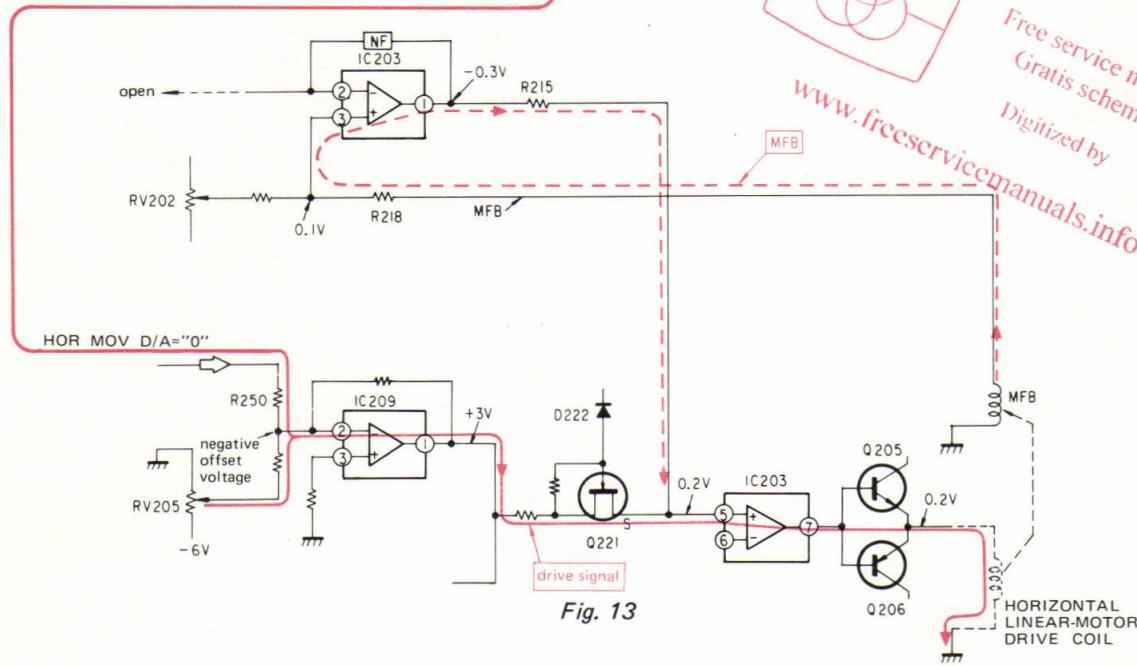
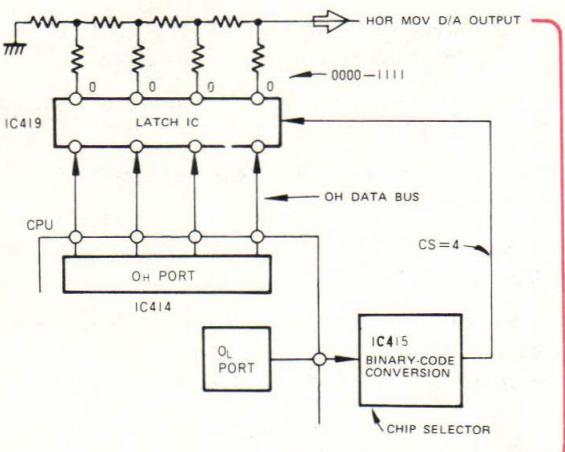
If the tonearm is at any position other than on the tonearm rest when the POWER switch is just thrown, the tonearm will return to the tonearm rest, because the CPU commands HOR MOV=0. This operation only happens following POWER ON.

Refer to the program flowchart above for this function. The tonearm return circuit is shown in Fig. 13.

The input HOR MOV D/A=0 means the following:

HOR MOV D/A=F tonearm advances: (1111)

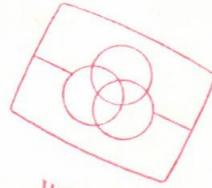
$\frac{F}{2} = 8$. . . tonearm stops: (1000)




0 tonearm returns: (0000)

This D/A (digital to analog) conversion output is made in IC419 on receipt of the digital datum from the CPU.

The HOR MOV D/A is shown as follows:

While the tonearm is in the return mode the D/A shown generates 0000 at 0, that is 4 BIT. Further, the O_H data bus is converted bit by bit for other IC's inputs. The necessary voltage for the returning operation, as shown in Fig. 13, is a low value of about 0.2V. The returning speed is fixed by the resistance value of R250.


Fig. 12

4) Tonearm Resting Detection

Whether the tonearm has returned to the tonearm rest is detected by the PORT R2 R10 (terminal 32)=1? in the CPU. The tonearm-resting detection circuit is illustrated in Fig. 14.

The detection is made by the sensor Q803 which turns on when the tonearm rested on the tonearm rest and the LED light source from D643 passes through the slotted wing's rest detection slits. When the power is on, the tonearm rest detection is instantaneous without the tonearm return if the tonearm is already in the tonearm rest position.

Free service manuals
Gratis schema's
Digitized by
www.freeservicemanuals.info

5) Zero Balance

When the tonearm comes to the tonearm rest, the tonearm zero balance is set, while maintaining the tonearm lightly in the direction of the tonearm rest so that the tonearm does not go in the direction of the turntable. The zero balancing is the process performed when the weight of the end of the tonearm within the specified limit is detected and the data used for automatic balancing is wrote in the RAM in the CPU. This is carried out by way of the circuit in Fig. 15. When the tonearm rested on the tonearm rest, the loop in Fig. 15 which has been separated from the CPU is completed. Now, let it be assumed that the zero balance has been made with the shell (cartridge) before the power has been applied, and further assume that the posture of the tonearm is horizontal.

So, when the power is switched on with the tonearm in the tonearm rest position, the above-mentioned feedback loop is formed and from the zero-balance detection area the "balanced" information is obtained and the output voltage of Q204 becomes zero, because the current to the linear-motor balance(stylus force) coil is unnecessary.

This condition is obtained at the following times: when a cartridge (including shell) of 23g without a subweight is used.

However, this situation cannot in fact occur, for the following reason:

Cartridge (shell incl.) 12-21g: subweight not used (12g standard)

Cartridge (shell incl.) 21-31g: subweight used.

Under this arrangement the cartridge-side end of the tonearm, which is always set in the UP position, has to be lowered to the balance position.

So, when the tonearm is at the tonearm rest with the power on, a negative voltage is applied to the balance coil (arm DOWN direction) from Q204.

This machine is so adjusted that with a 12g cartridge (shell incl.) the tonearm is zero balanced and horizontal on the tonearm rest. In other words, with a cartridge weight above 12g, the tonearm is held with a very slight downward slant from the horizontal position. (the precise degree of incline varies according to the servo-loop gain.)

The weight of the cartridge can be measured by calculating the amount of incline of the tonearm (amount of incline within the limitation of servo linear operation), since this directly indicates the weight of the shell section.

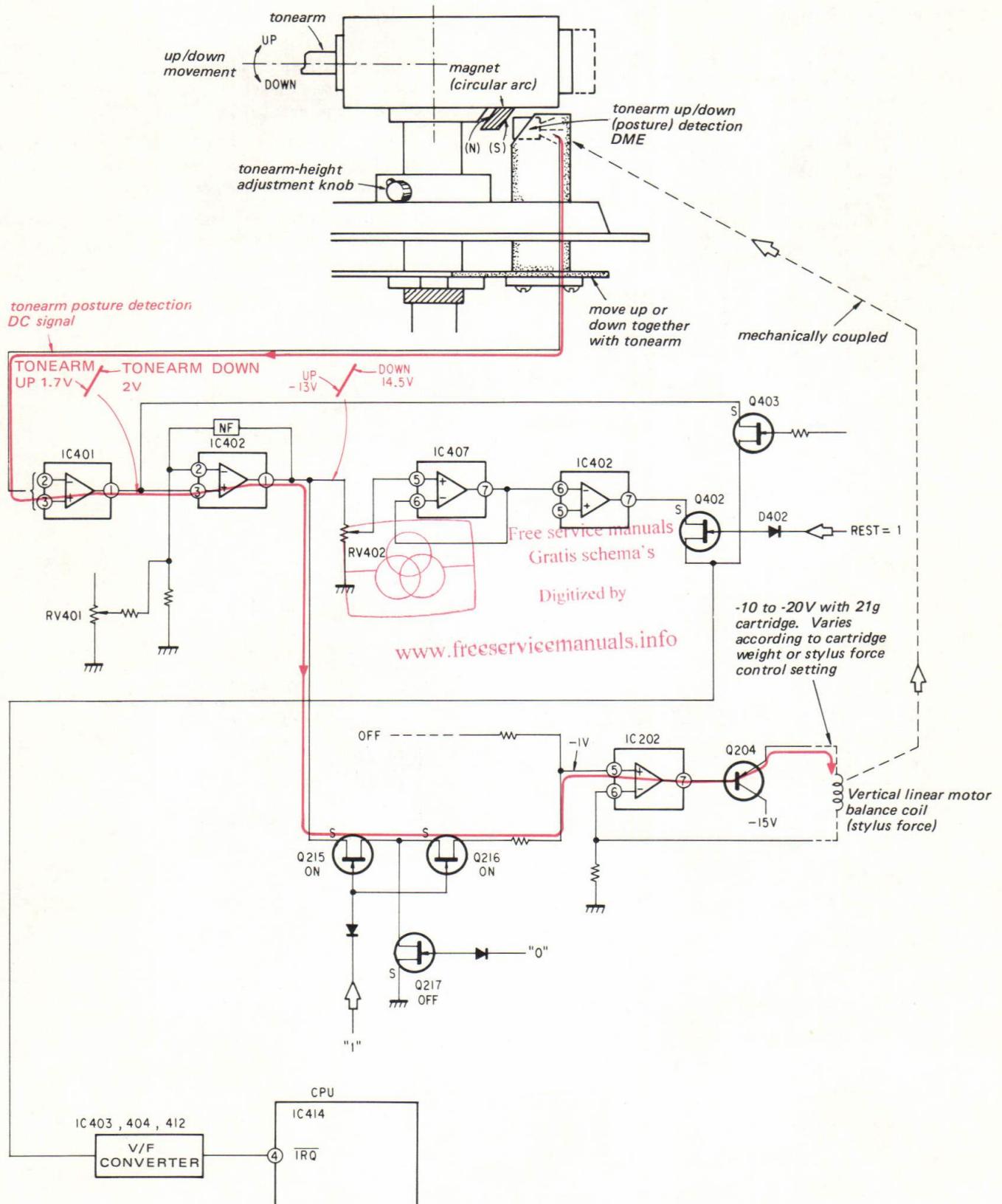


Fig. 15

6) About the DME

The DME (Divider-type Magnetic-sensitive Element: DM101A) is a three-terminal thin-film device with strong magnetic properties. The output voltage changes by the direction of the magnetic field. This situation is similar to that where a variable resistor is caused to rotate.

When there is no magnetic field as in Fig. 16, at the point $V_{CC}/2$ there is a neutral-potential point. When a magnetic field is brought near the device, the potential changes in accordance with the direction of the magnetic field.

The total resistance value is 1.5kohms (range of 1.2–1.9 kohms). Also, the voltage variation to be utilized is 4.7% of the applied voltage.

In this machine, the device is used in the potential area shown by the broken thick line in Fig. 16.

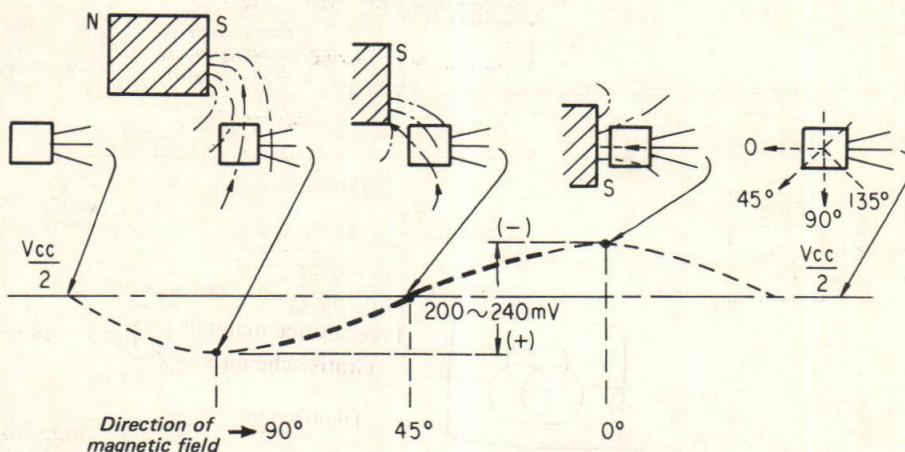


Fig. 16

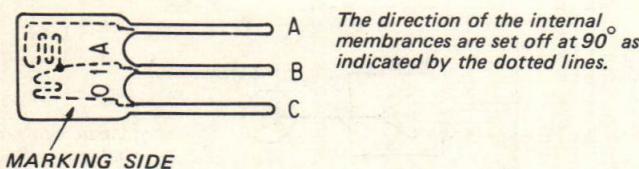


Fig. 17

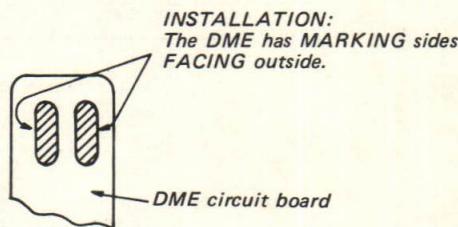
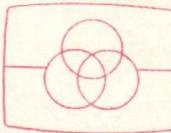


Fig. 18


7) Tonearm Posture Detection

The tonearm posture signal enters the **IRQ** terminal of the CPU as a "frequency" by the V/F conversion circuit.

When the weight of the cartridge is 12g, the frequency when the tonearm is horizontal is set at $2,400 \pm 20$ Hz. Q401 in Fig. 19 is the feedback route and blocking oscillation is generated by IC403 and IC404.

When the blocking at the input side is released, the frequency is decided by the input DC voltage which biases it and the constant C.R.

The frequency is proportional to the input DC voltage (* mark) and inversely proportional to cartridge weight. As in Fig. 19, with a 12g cartridge at 2,400Hz, this signifies that the CPU knows that $2,400\text{Hz} = 12\text{g}$. This is counted by the balance counter and memorized internally.

Free service manuals
Gratis schema's

Digitized by

www.freeservicemanuals.info

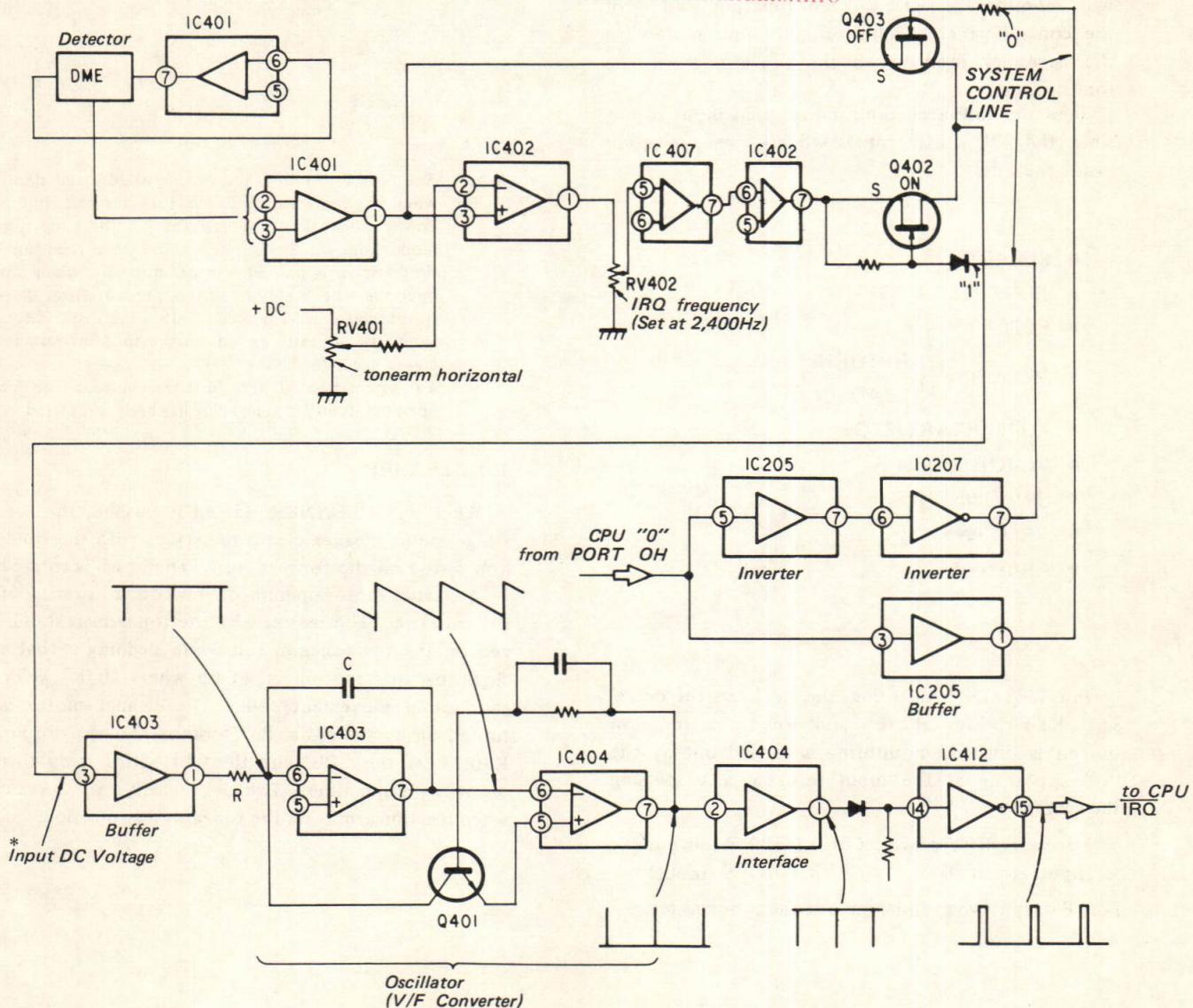


Fig. 19

8) STANDBY Lamp

During the zero balancing the STANDBY lamp is turning on, and all the buttons on the control panel are disabled by the CPU. In other words, this means that if the STANDBY lamp is not turned off then execution of the program cannot go ahead. The summary of the above-mentioned outline is;

The tonearm returns to the tonearm rest when POWER is turned on.

When the zero-balancing is finished, SPEED is set to "33" (lamp lights up) and STYLUS FORCE display is of the value within "0.5-3.0g".

9) KEY

When the zero balancing is finished, the CPU will monitor the KEYs (each function switch of the control panel). Monitoring is limited only to the necessary input when the tonearm is on the tonearm rest.

0 in the following table means that input is possible (the CPU will accept it), while x means rejection inside the CPU.

● CLEANER	○
● 45 - SPEED - 33	○
● REPEAT	○
● MEMORY { RETURN	x
LEAD IN	x
● AUTO START/STOP	○
● MOTOR ON/OFF	○
● UP/DOWN	x
● ARM : ←	○
● ARM : →	x

For KEY IN monitoring, the CPU sets the necessary KEY power at "0" and when the function button is pushed, monitoring is carried out by the "0" appearing at the input terminal after passing the switch.

Necessary KEY power: CPU's PORT P (output)
Input Terminal: CPU's PORT K (input)

Port P output when tonearm is at the tonearm rest:

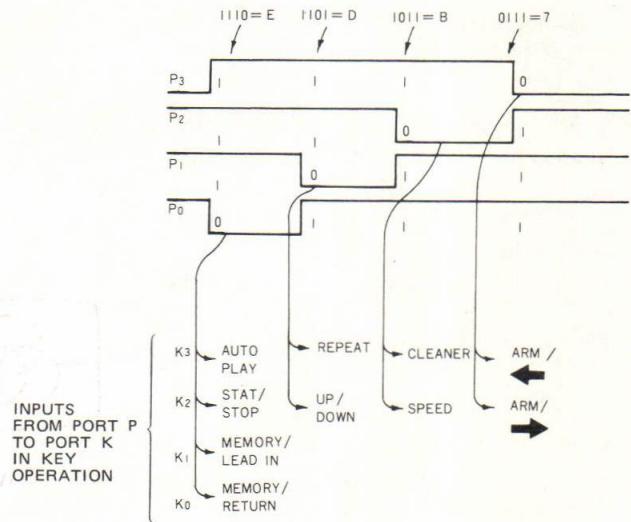


Fig. 20

Note: The port P output is put out repeatedly and stably when the tonearm is at the tonearm rest, but is erased when the CPU transfers to the execution mode from the key-stroke routine when each function button is pressed. In other words, when not operating the function button the waveform illustrated above is generated. Also, the display data when the tonearm rested on the tonearm rest are erased inside the CPU.

To summarize, if the function buttons can be operated, then zero balancing has been completed.

10) CLEANER

When the CLEANER button is pushed, the cartridge stylus cleaner cleans the stylus with the tonearm rested on the tonearm rest. The brush is rotated by a cleaner motor unconnected with the lowering of the tonearm. The reason why the tonearm is stabilized on the tonearm rest while cleaning is that a slight backing motion is set up where HOR MOV (horizontal movement) = 4. The cleaner motor is turned on by the signal R0 (terminal 22 = φ) of Port R0, 1 of the CPU, and the CLEANER lamp turns on at the same time. The cleaner will only operate when the tonearm is on the tonearm rest position.

11) LOOP

If there is no input from function button with the tonearm rested on the tonearm rest, then the CPU begins looping. This operation compares the status of the CPU and the present tonearm status, by entering the section marked STATE? on the program flowchart. When all checks have finished, it returns again to the slit verification routine.

1-7-4. AUTO PLAY

When the AUTO PLAY button is pressed, everything starts to operate automatically.

Press the AUTO PLAY button once:

START lamp lights up.

AUTO PLAY (right-side) lamp lights up

(Motor starts rotating at 33rpm)

UP lamp lights up.

The AUTO PLAY button cannot be cancelled until the tonearm is lifted up in the tonearm rest position. When the tonearm is up, cancel by pressing the AUTO PLAY button again.

The tonearm rises and moves in a horizontal direction towards the record surface. At this point, if no record has actually been placed on the turntable, then the tonearm will return back after it has moved out 2cm from the tonearm rest. This is because the CPU signals a return instruction through the record-presence monitor circuit.

1) Record Monitoring (and Size Monitoring).

Infrared rays are permanently irradiated on top of the turntable from the three diodes mounted to the left of the tonearm pivot. The infrared rays which pass through the turntable-mat slit and are bent by the turntable prism, are then detected by three phototransistors mounted on the auto-size board on the frame under the turntable. No light can be seen because infrared rays are outside the visible spectrum.

The outputs from the three phototransistors are switched on and off following the turntable rotation, so pulses are generated which serves as the input signals to the port R₃ of the CPU and is detected in the following manner:

The relation between port R₃ and record size:

	terminal 35	terminal 36	terminal 37	record
PORT R ₃	0	0	0	30cm
	1	0	0	25cm
	1	1	0	17cm
	1	1	1	none

Example: 30 cm record

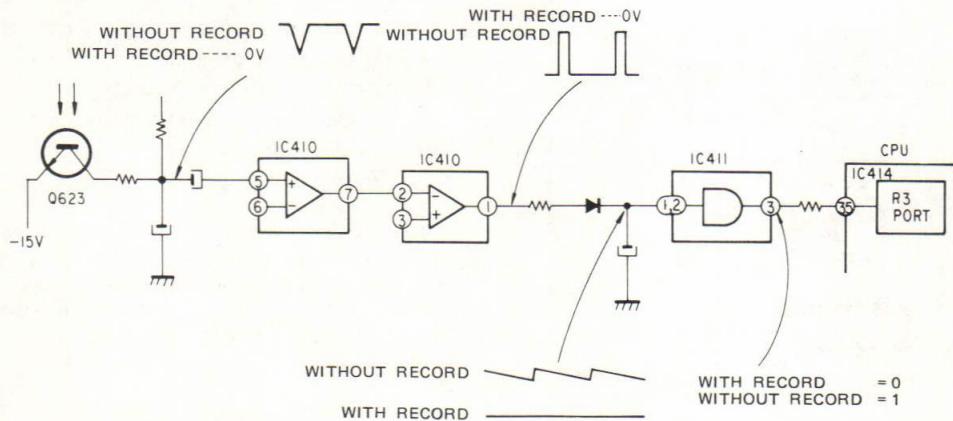
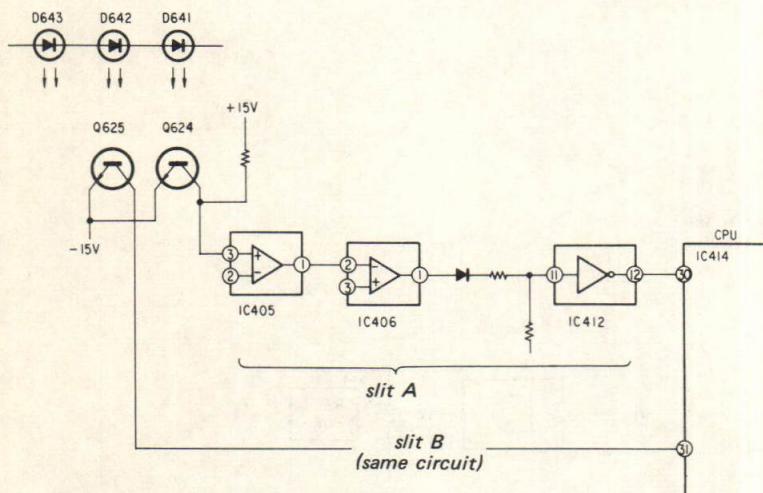


Fig. 21

2) Target of Tonearm Motion

When the tonearm moves toward the record, the position of the record lead-in is decided by counting the slotted-wing's slits which rotate together with the tone arm's horizontal linear-motor section. The target is programmed as follows: The target is the record area.

The slit number x is the lead-in target.


In other words, when the tonearm is moving toward the record, the horizontal-drive voltage is established at "F" for forward motion until the slit counting has reached the target slit. When the record area is reached, the CPU stops the tonearm, by changing from "F" to "8" (a central value between forwarding and returning the tonearm) which signifies stoppage.

The slits consist of an arrangement of 300 narrow slits of 0.12mm width each.

Note: If the slits are dirty or dusty, the tonearm will not be able to count the number of slits. Seeing that the lead-in position has not been reached, it will continue travelling toward the center of the record.

3) Slit-Count Section

Slit-Count Circuit is illustrated in Fig. 22:

Slits are arranged in two layers as below

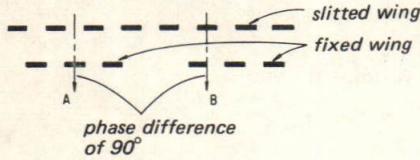
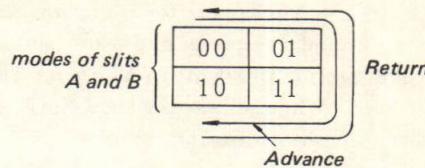



Fig. 22

For this reason, when slits A and B are compared phase-wise, both forward and backward motions can be detected.

4) Lead In

When the tonearm reaches the record area, it lowers to the record surface.

When in forward mode, a fixed voltage has already been applied to the balance (stylus force) linear-motor coil. An UP voltage is also applied to the drive coil and this becomes the DOWN voltage when cancelled at the record area. When the stylus landed on the record, the landing signal is picked up by IC208 and the drive coil is now switched to the servo operation which in turn acts as the damper during the record trace mode. Also, the muting is released.

5) End Detection

The record end is programmed by counting the number of slits. When the programmed number of slits have been counted, this means the record end position has been reached and the tonearm returns to the tonearm rest.

1-7-5. MEMORY

If the MEMORY button is pressed, while in the record area (after the lead-in position), the MEMORY lamps turn on and MEMORY LEAD IN or MEMORY RETURN can be programmed. The LEAD IN setting always precedes the RETURN. So even if mistakenly, RETURN is programmed first, or LEAD IN later, the CPU is programmed to cancel the instruction previous to that operation.

Note: The shortest MEMORY LEAD IN/RETURN is at the same slit position, but in this case the tonearm goes from DOWN \rightarrow UP to RETURN. In AUTO PLAY with the memory programmed, the stylus will lead in at that position.

1-7-6. REPEAT

This button will decide the repeating of the MEMORY or fullplay.

The repeat operation can be made by the number of times the button is pressed to an upper limit of 15 times as a result of the 4-BIT counter used. When the REPEAT button is pressed 16 times, it returns to zero, i.e., no repeat. If it is pressed during the playback, that time is also added. Until this button is made to return by AUTO STOP, the repeating data is memorized in the CPU.

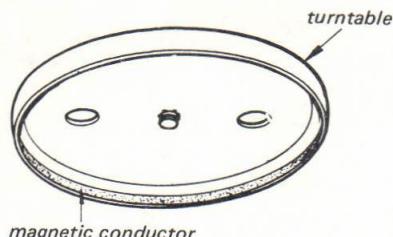
1-7-7. Stylus-Force Value D/A

The stylus force is decided in the stylus force circuit board. The stylus-force data is conveyed and added to the balance coil through Q218 in the linear-motor circuit board.

1-7-8. Main Motor (Turntable) Circuit

Here the instructions 33 or 45 and STOP or START are applied from the CPU. Otherwise it operates as a crystal-locked PLL servo.

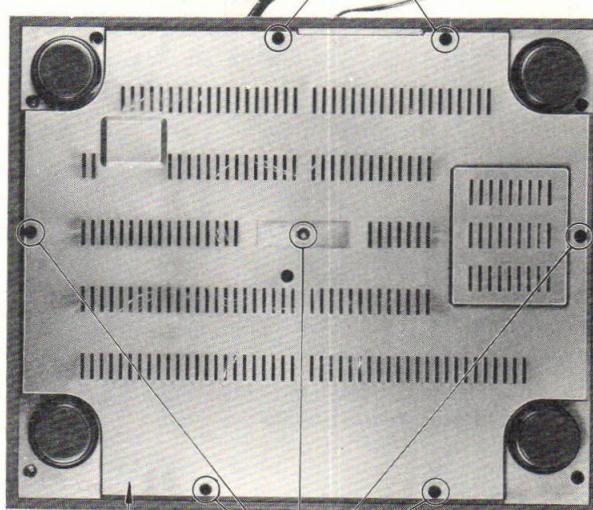
SECTION 2

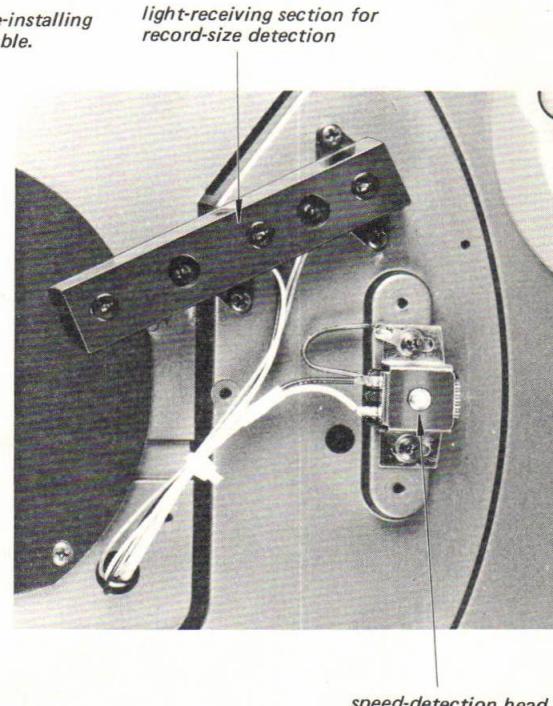
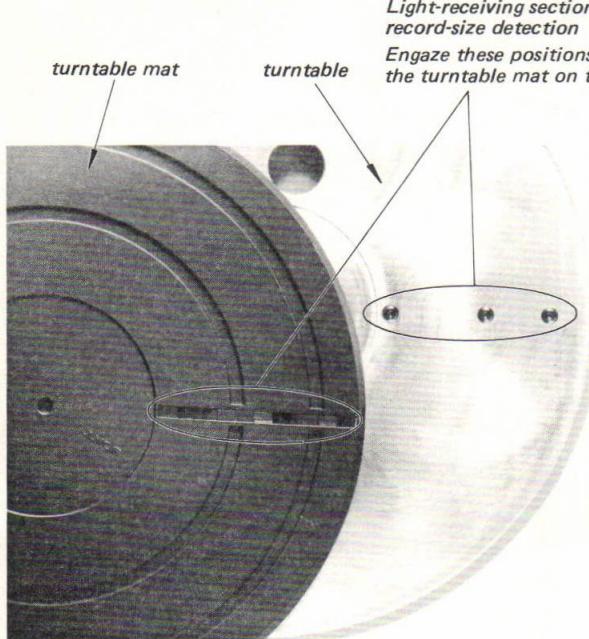

DISASSEMBLY

Note:

Follow the disassembly procedure in the numerical order given.

Note:


Be sure not to scratch and hurt the magnetic conductor coated on the inside wall of the turntable.



- Unplug the power cord.
- Remove the turntable.

BOTTOM PLATE REMOVAL

① TA, P 3 x 25

REFERENCE PHOTOS:

SECTION 3

ADJUSTMENTS

Notes on Making Adjustments

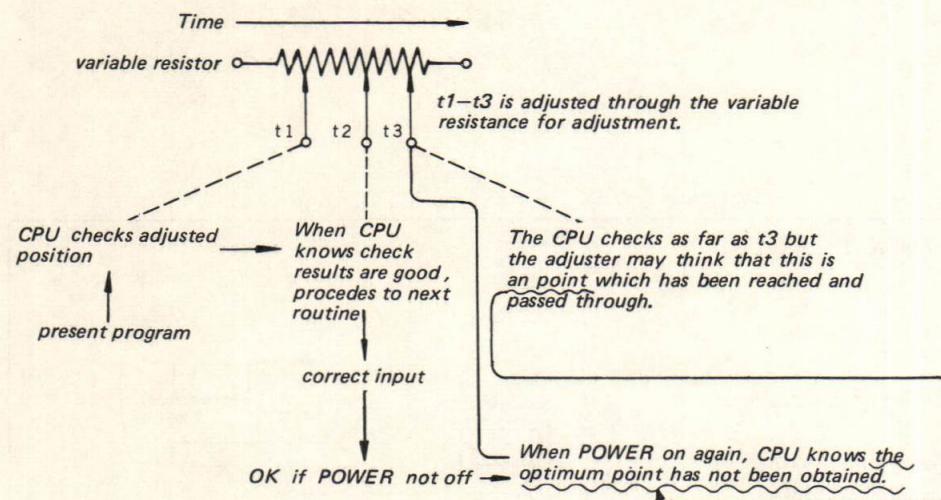
When making adjustments to machines with computers installed, take the following precautions:

The computer program operates on the following two systems:

1) The continuous check and review system

... Ex: function button input etc.

Since the function button could be pressed at any time the program is made for continuous checking.


2) The alternative system is where, when one process is completed, it is committed to the memory and not reviewed.

... Ex: inputs for zero balancing etc.

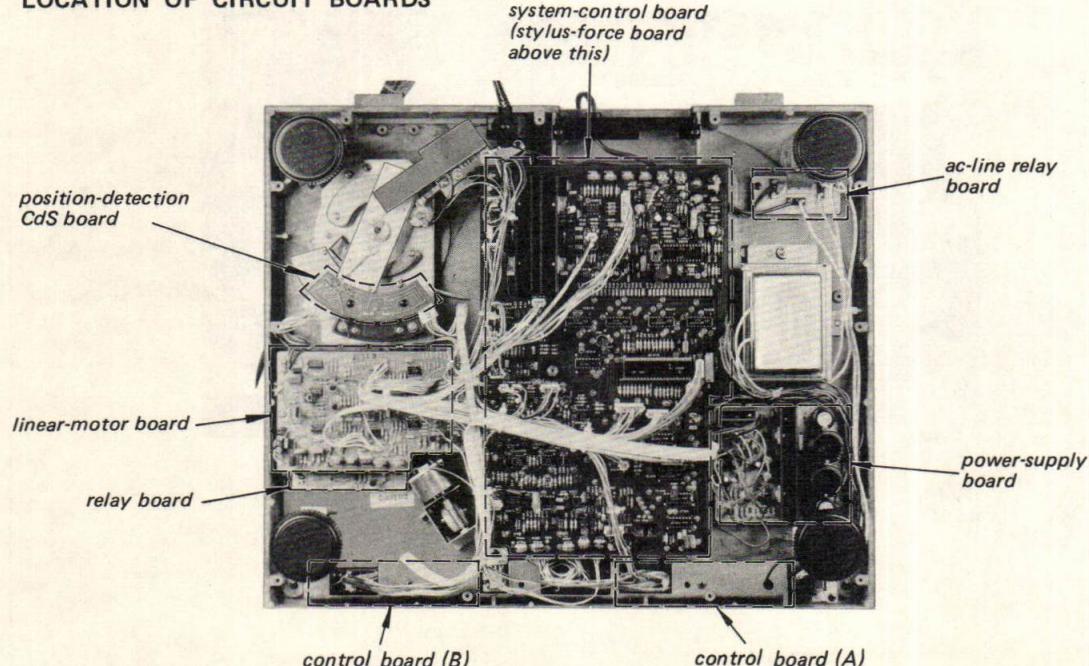

The important one is the later case.

Fig. 21 is an example of an adjustment operation as it happens in time sequence.

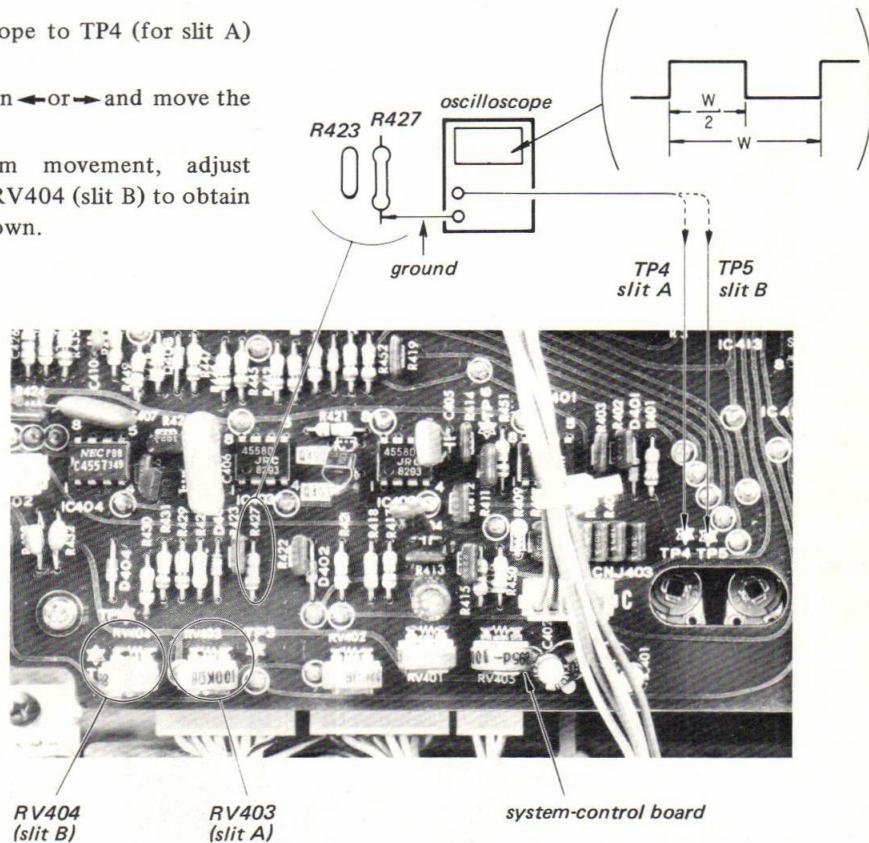
It is important, once all the adjustments have been made, to return to the initial status (POWER OFF) and allow the results of the new adjustments to be carried to the computer.

LOCATION OF CIRCUIT BOARDS

PRECAUTION:

1. Place the set on a horizontal place.

2. Put a cartridge on the tonearm.

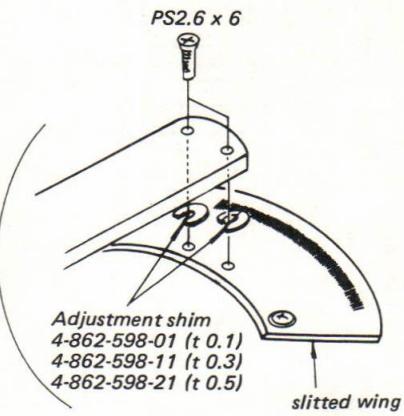
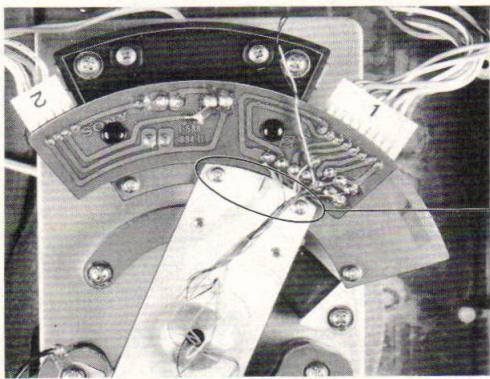
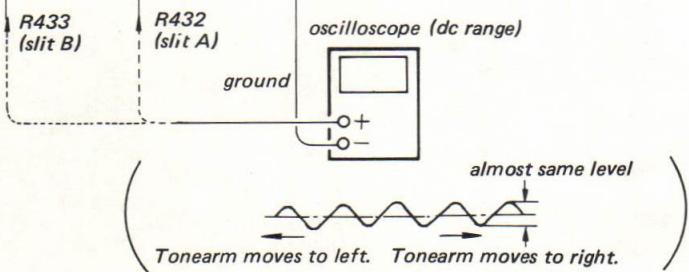
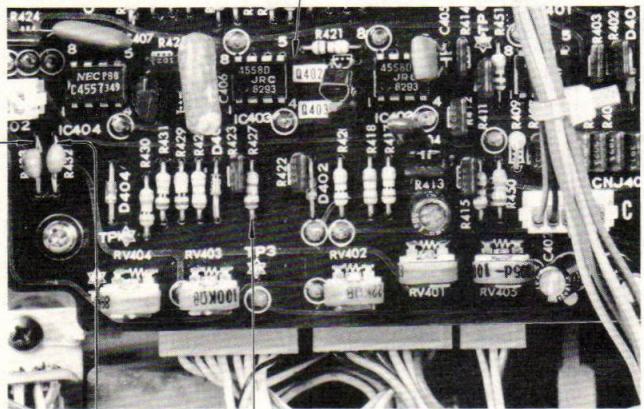

3. Turn the POWER switch on.

Wait until the tonearm returns on the tonearm rest and the STANDBY lamp turns on and until the STANDBY lamp turns off when the zero-balance is automatically accomplished.

4. Proceed to the following adjustments.

SLIT A and SLIT B ADJUSTMENTS**Procedure:**

1. Connect an oscilloscope to TP4 (for slit A) or TP5 (for slit B).
2. Push the ARM button \leftarrow or \rightarrow and move the tonearm.
3. During the tonearm movement, adjust RV403 (slit A) and RV404 (slit B) to obtain the squarewave as shown.

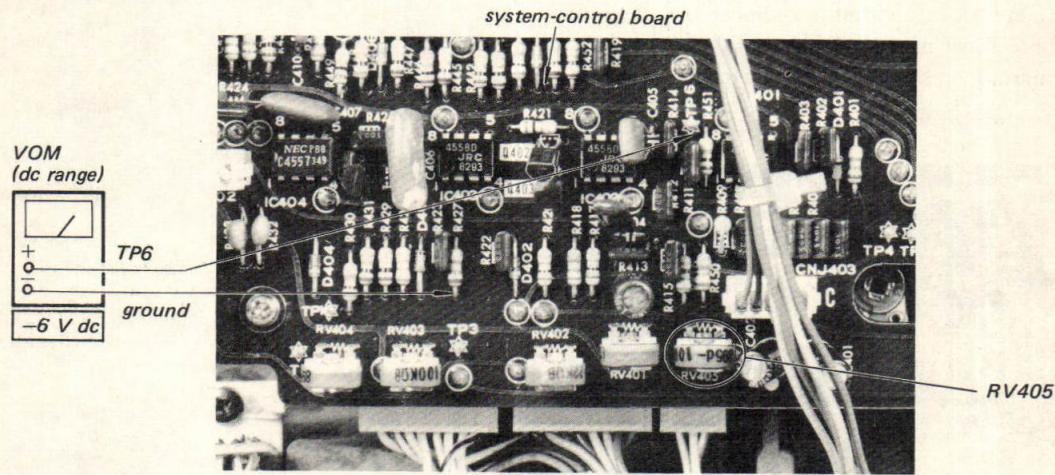





SLITTED-WING POSITION ADJUSTMENT

Procedure:

1. Connect an oscilloscope to the points as shown below.
2. Push the ARM button \leftarrow or \rightarrow and move the tonearm.
3. Adjust the position of the slitted-wing with the adjustment shim so that an almost the same-level sine wave is obtained during the tonearm movement, i. e., the slotted-wing swing.

system-control board

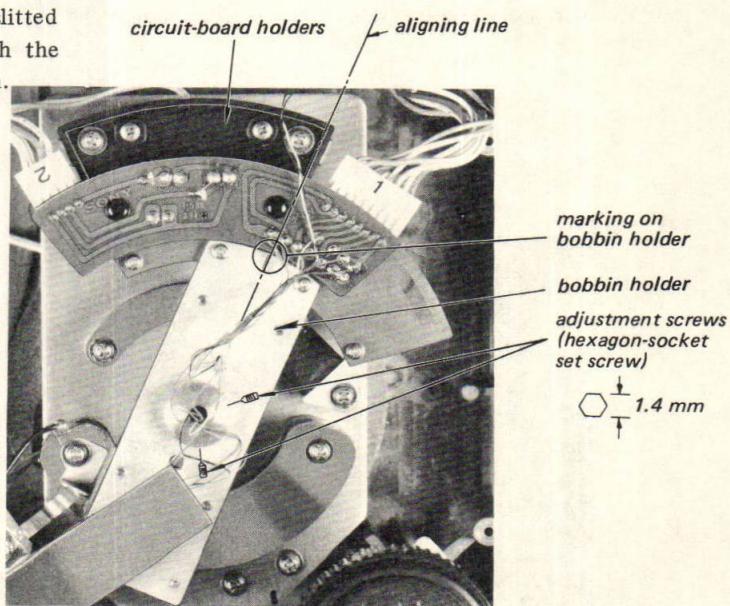
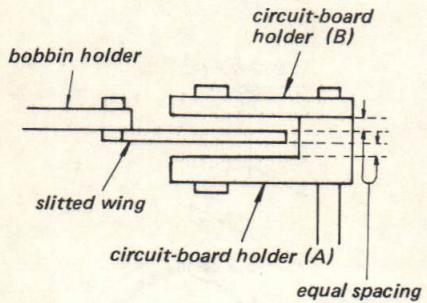


TONEARM REST SIGNAL ADJUSTMENT

Note: The arm-resting position has no effect to this adjustment.

Procedure:

1. Release the tonearm rest to free the tonearm.
2. Connect a VOM to the points as shown below.
3. Adjust RV405 to obtain -6Vdc.

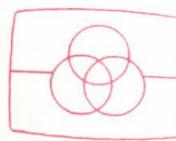



TONEARM REST POSITION ADJUSTMENT

Note: Perform this adjustment when the bobbin holder at the pivot of the tonearm is removed or moved.

Procedure:

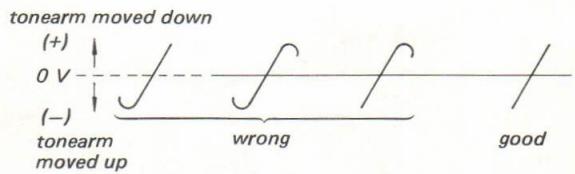
1. Secure the tonearm on the tonearm rest.
2. Loosen the adjustment screws and align the edge of the circuit-board holder and the mark on the bobbin holder as shown.
3. Secure the bobbin holder so that the slotted wing passes through the center of both the circuit-board holders (A) and (B) as shown.

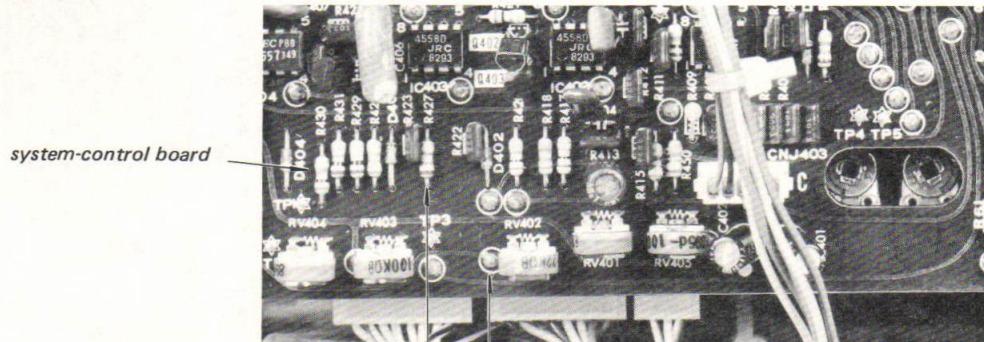
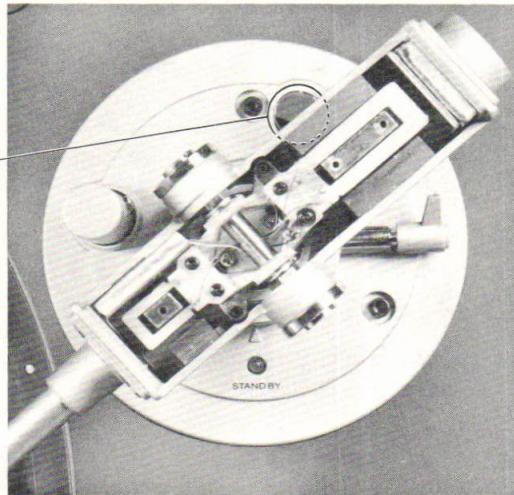
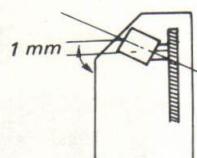
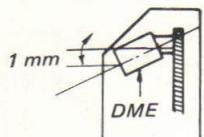


V/F LINEARITY ADJUSTMENT

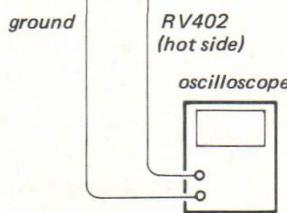
Note: The tonearm position signal (dc) generated in the DME varies according to the position of the DME. This dc voltage should maintain a linear characteristic.

Procedure:

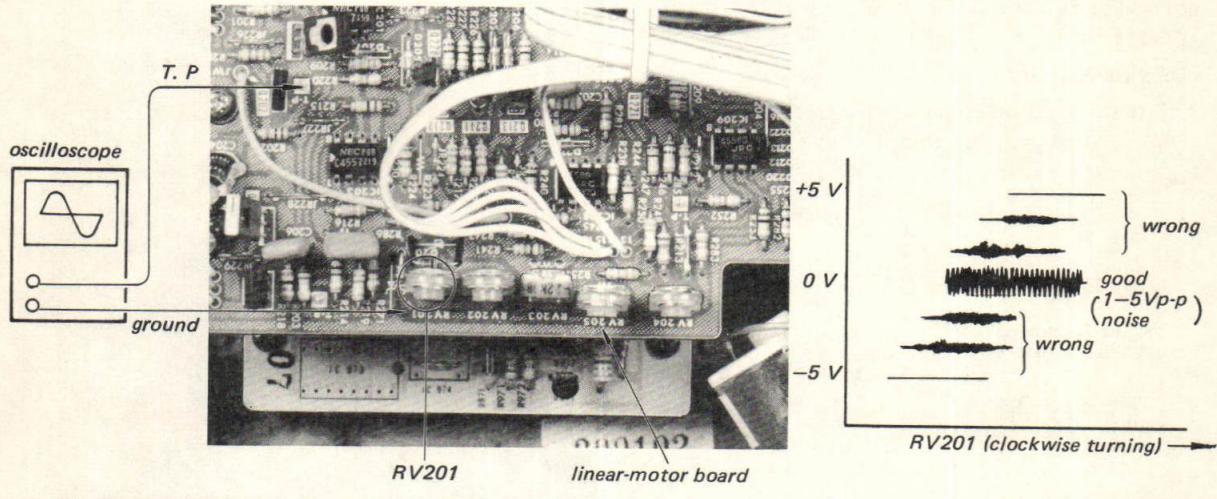

1. Connect an oscilloscope to the points as shown below.
2. Place the tonearm to the tonearm rest, but do not secure on the rest.
3. Move the tonearm up and down by hand and check the waveform.
4. Adjust the position of the DME by about 1 mm ($\frac{1}{64}$ ") by using a chopstick through the opening to obtain the linear waveform.





Free service manuals
Gratis schema's

Digitized by

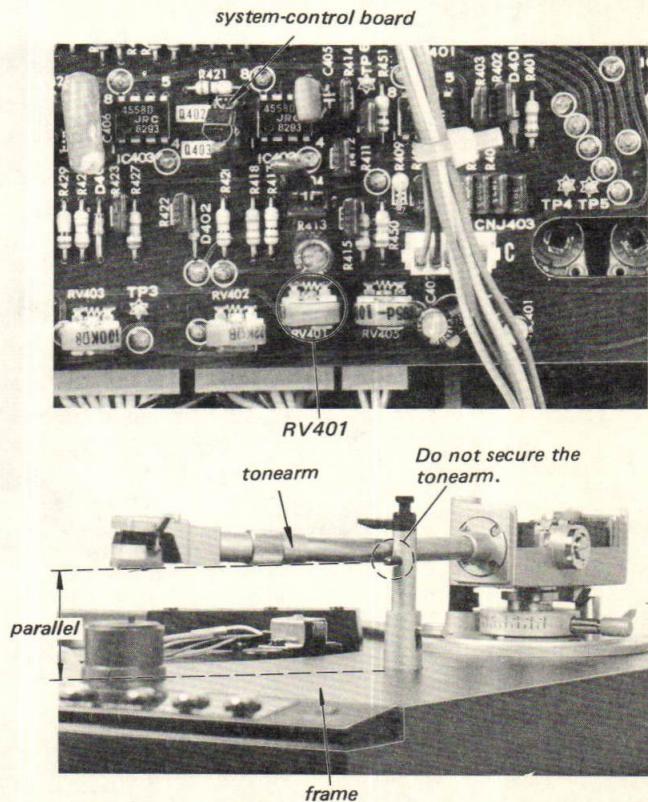

www.freeservicemanuals.info

Adjust by moving the DME up or down.


system-control board

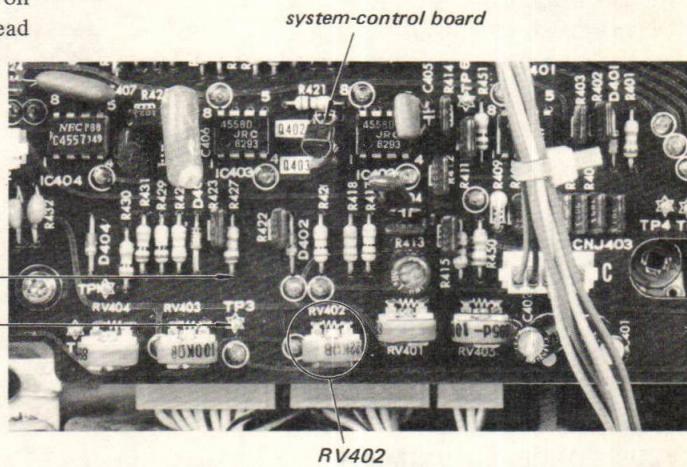
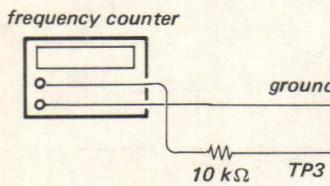
TONEARM VERTICAL LINEAR-MOTOR OFFSET ADJUSTMENT

Procedure:

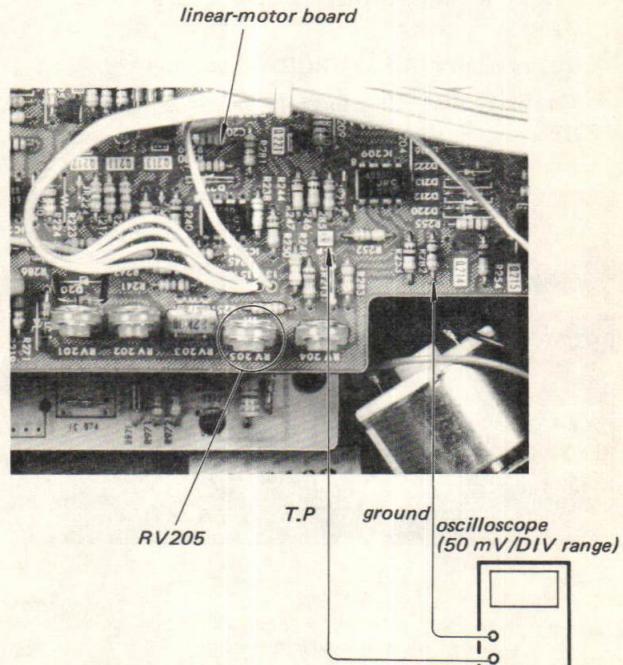

1. Connect an oscilloscope to the points shown below.
2. Place the tonearm to the tonearm rest, but do not secure on the rest.
3. Adjust RV201 to obtain a symmetrical waveform centered on 0V line as shown below.

TONEARM HORIZONTAL ADJUSTMENT

Procedure:

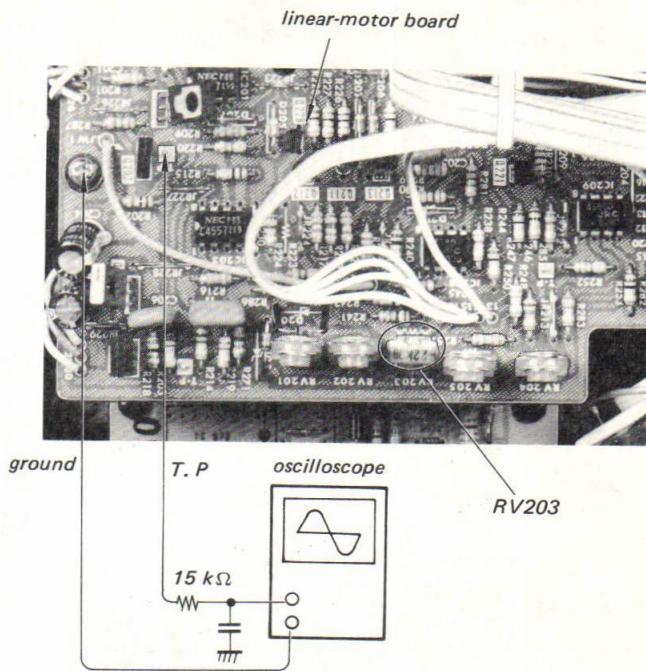


1. Put a cartridge weighing 12g with the stylus on the tonearm.
2. Place the tonearm to the tonearm rest, but do not secure on the tonearm rest.
3. Adjust RV401 so that the tonearm positions in parallel with the frame's face.
4. After the adjustment, recheck the tonearm vertical linear-motor offset shown above.

IRQ FREQUENCY ADJUSTMENT

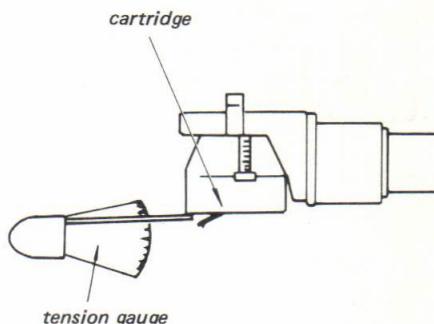
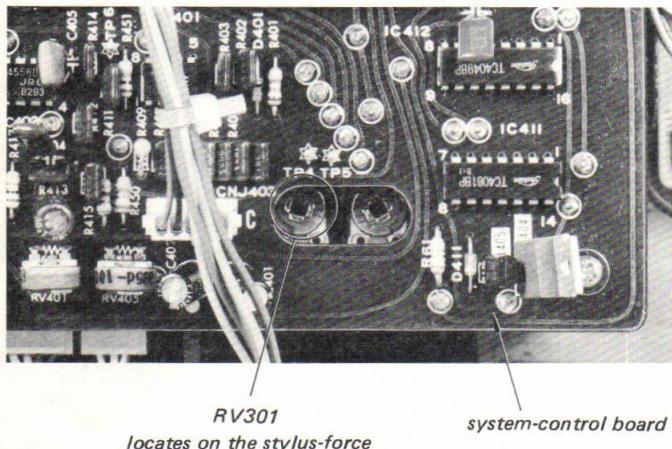

1. Put a cartridge weighing 12g with the stylus on the tonearm.
2. Place the tonearm to the tonearm rest, but do not secure on the rest.
3. The tonearm should be in parallel with the frame's face.
4. Connect a frequency counter to TP3 as shown below.
5. Adjust RV402 to obtain $2,400 \pm 20$ Hz (2,380 – 2,420 Hz) reading on the counter.
6. Turn the POWER off. Then turn POWER on again, the frequency counter should read $2,400 \pm 20$ Hz.

Note: The frequency rises when the cartridge side is above the horizontal line.
The frequency lowers when the cartridge side is below the horizontal line.

TONEARM-DOWN HORIZONTAL OFFSET ADJUSTMENT (1)

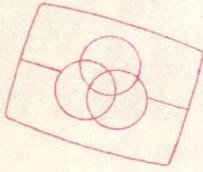

1. Connect an oscilloscope to the points as shown below.
2. Put a record on the turntable mat.
3. Hold the turntable so that it does not move.
4. Push the tonearm UP/DOWN button and place the cartridge on the record groove.
5. Adjust RV205 so that the voltage reading becomes 0V.

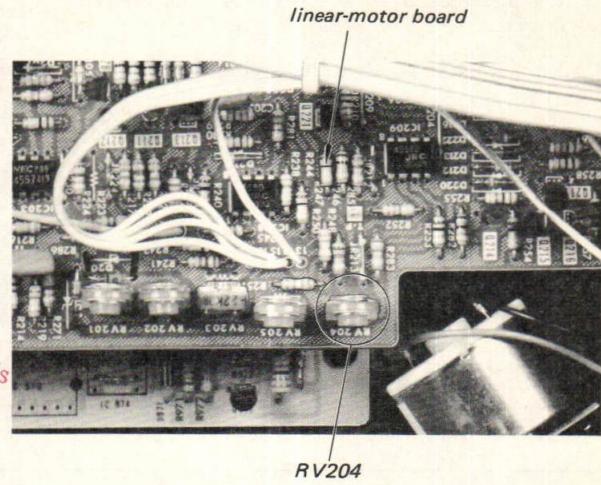
VERTICAL-BALANCE OFFSET ADJUSTMENT



Note: Do not turn the STYLUS FORCE control during the adjustment.

1. Connect an oscilloscope to the points as shown below.
2. Put a record on the turntable mat.
3. Put the tonearm on the tonearm rest. The STANDBY lamp should turn on. Memorize the level of the waveform.
4. Push the tonearm UP/DOWN button and place the stylus on the record.
5. Adjust RV203 so that the waveform level becomes the level obtained in step 3.

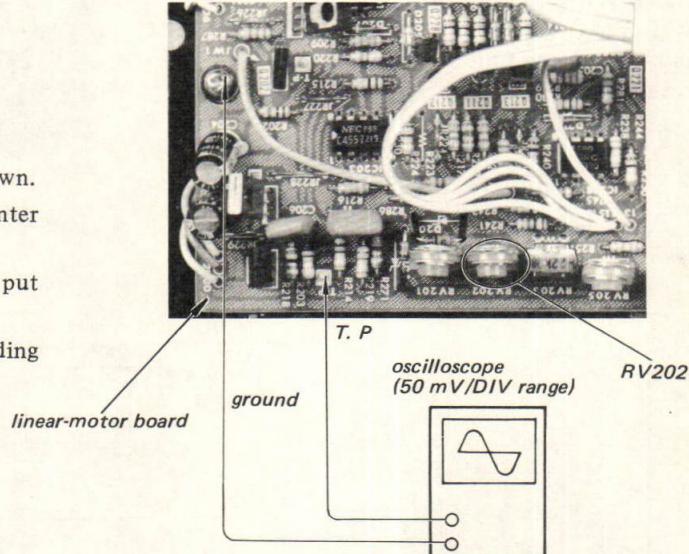
STYLUS FORCE ADJUSTMENT


1. Turn the STYLUS FORCE control for 3g.
2. Put the cartridge's edge on a tension gauge as shown below.
3. Adjust RV301 so that the tension gauge reads 3g.
4. Turn the STYLUS FORCE control for 0.5g.
5. Confirm that the tension gauge is reading 0.5g.


locates on the stylus-force board above the system-control board

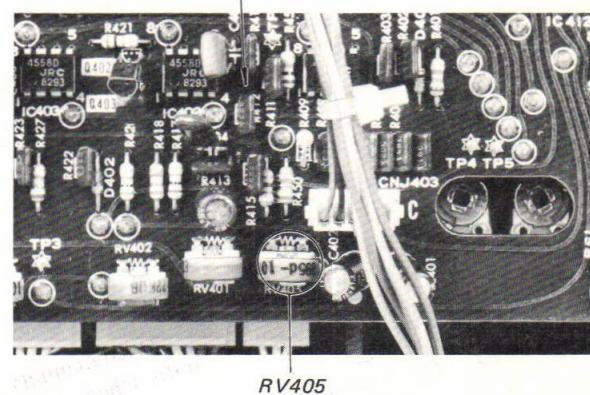
INSIDE FORCE ADJUSTMENT

1. Put a blank record on the mat.
2. Set the SPEED to 33rpm.
3. Set the STYLUS FORCE to 3g.
4. Put the tonearm down on approximately the center of the recorded area (imaginary).
5. Adjust RV204 so that the tonearm does not skat.


Free service manuals
Gratis schema's
Digitized by
www.freeservicemanuals.info

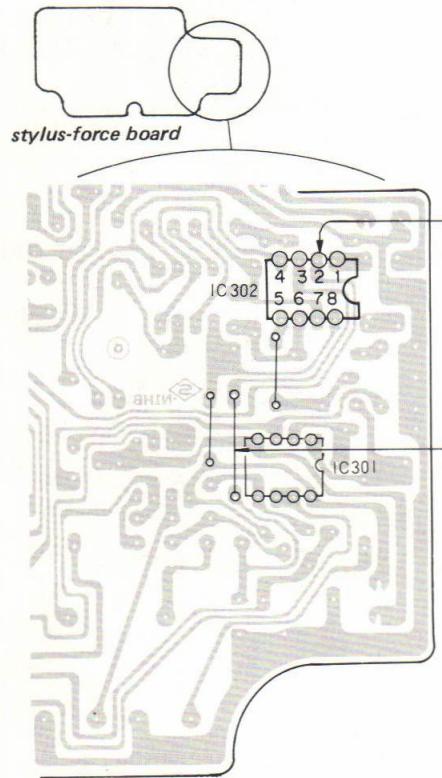
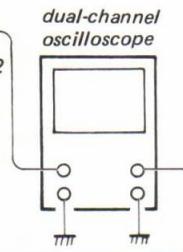
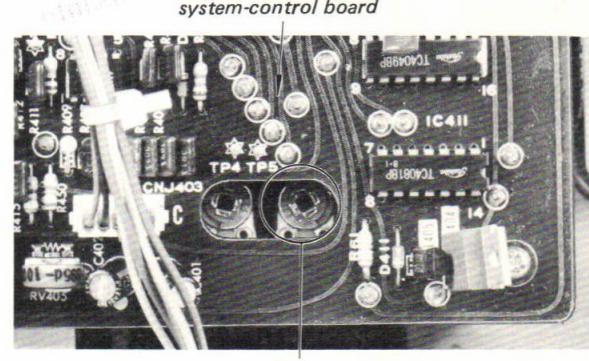
DOWN HORIZONTAL OFFSET ADJUSTMENT (2)

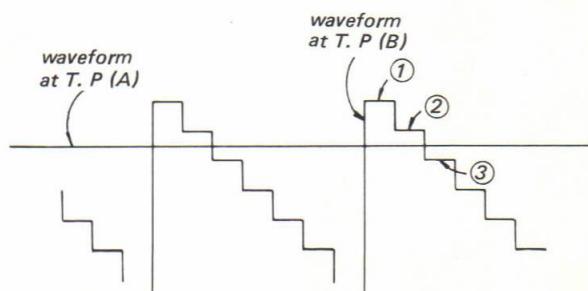
Note: Perform this adjustment after the inside force adjustment.

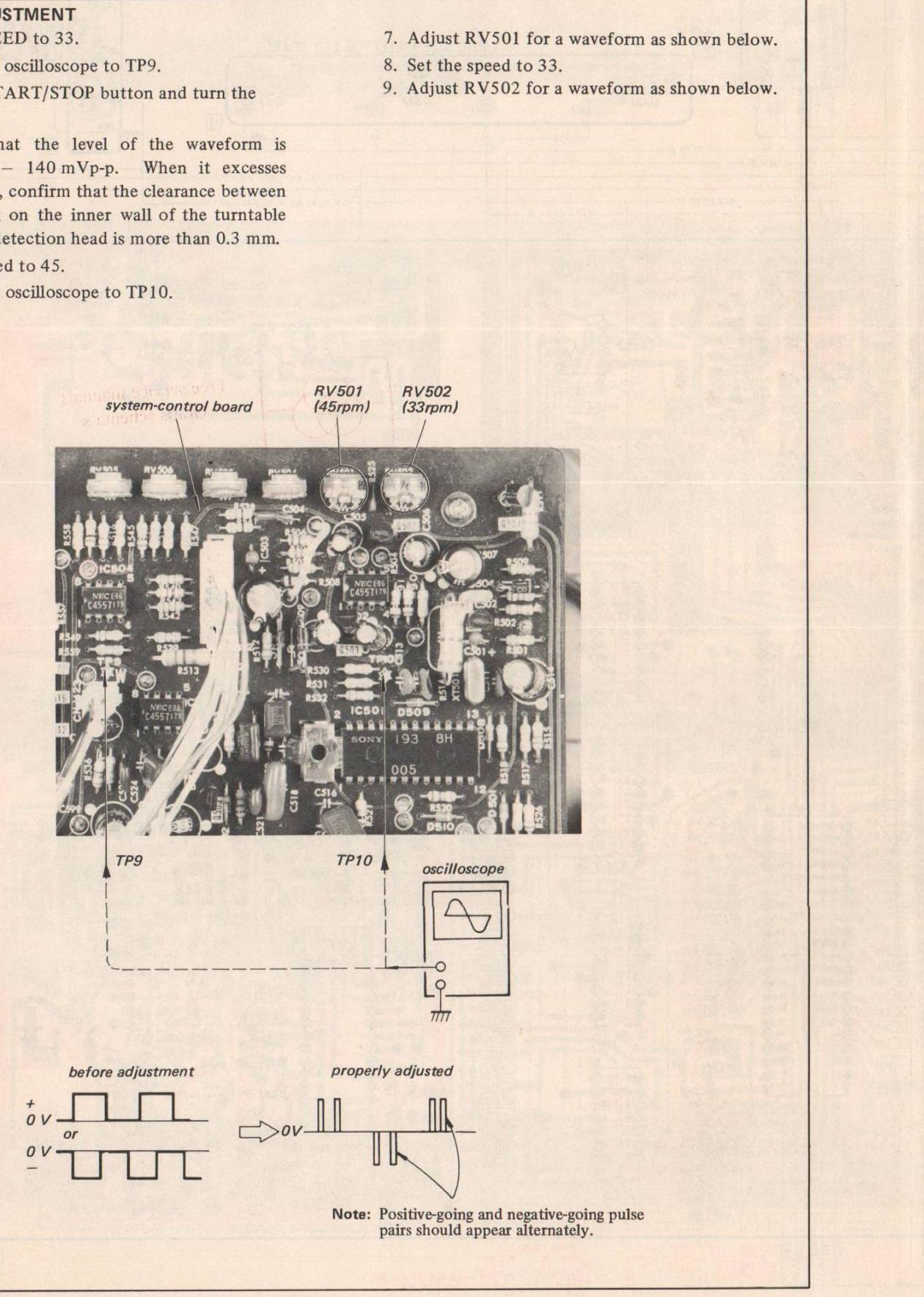
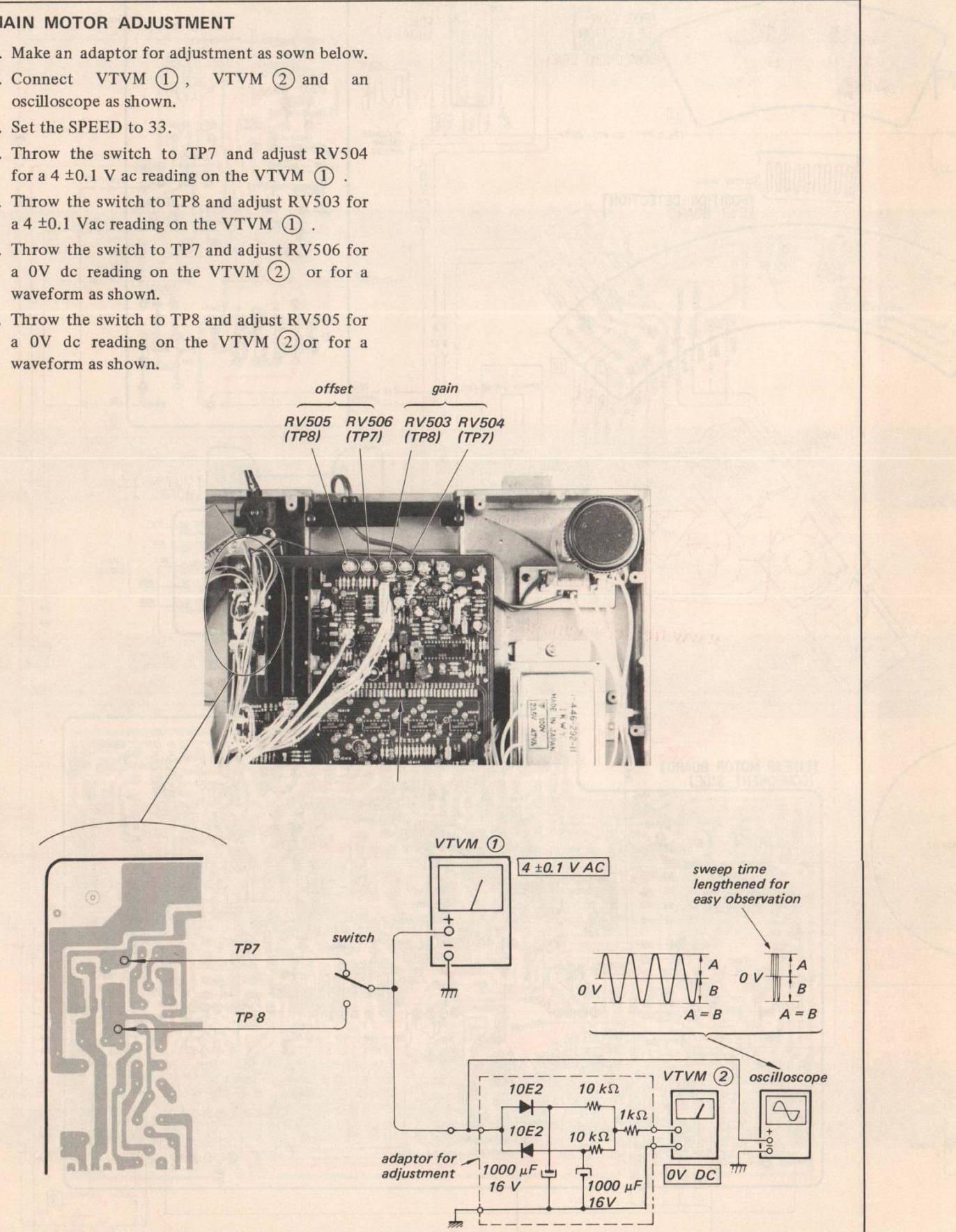

1. Put a record on the turntable mat.
2. Hold the turntable so that it does not move.
3. Connect an oscilloscope to the points as shown.
4. Move the tonearm by hand to the center of the recorded area.
5. Push the tonearm UP/DOWN button and put the tonearm on the record.
6. Adjust RV202 so that the voltage reading becomes 0V.

LEAD-IN POSITION ADJUSTMENT

1. Put a test record YFSC-16 (SIDE A) on the turntable.
2. Adjust RV405 so that the stylus is led in the 8-13th count (voice announcement in Japanese) of the first landing-point test grooves when the AUTO PLAY button is pushed.




system-control board

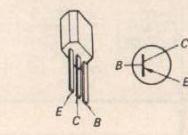

RV405



STYLUS FORCE ADJUSTMENT

1. Connect a dual-channel oscilloscope to the points as shown below.
2. Turn the STYLUS FORCE control to the full-clockwise stop "R".
3. Adjust RV302 so that the line-wise waveform at T. P (A) places in the midst of the second and third steps of the step waveform at T. P (B) as shown.

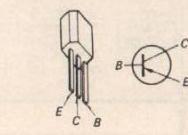
TP (B)
IC302
terminal 2T. P (A)
jumper wire
(JR 304)located on stylus-force board
above system-control board

RV302

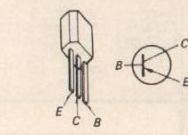


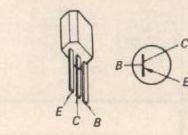
SECTION 4 DIAGRAMS

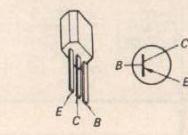
For replacement, use semiconductors except in ().

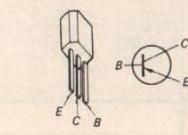

Q101, 404: 2SC1061 (2SC1419)
Q509, 515: 2SD476A

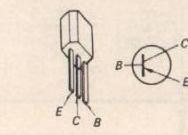
IC307: TC4073BP (TC4073)
IC308, 411: TC4081BP (TC4081)
IC309: TC4013BP (TC4013)
IC413: MSM4069

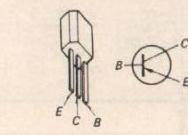

Q510, 516: 2SA1027R (2SA893)

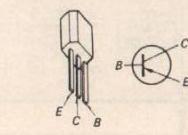

IC414: MB8841-125 (MB8841)

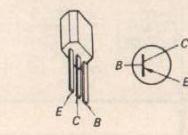

Q001, 002 : 2SC1364

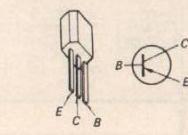

Q003, Q104, 105 : 2SK30A (2SK30)

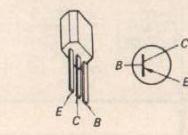

Q004: 2SC1474 (2SD471)

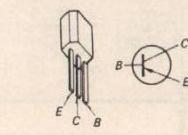

Q005, Q207, 208 : 2SD471

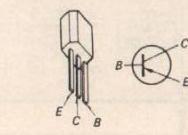

Q006, 107: 2SA1027R (2SA678)

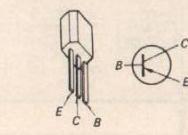

Q007, 503, 504, 506, 512: 2SA1027R (2SA844)

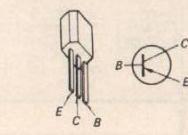

Q008: 2SA671 (2SA755)

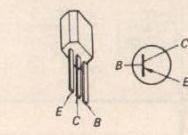

Q009, 110 : 1S1555

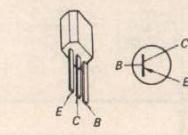

Q010, 111: HZ7B2L

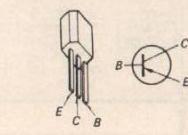

Q011, 112: HZ6B2L

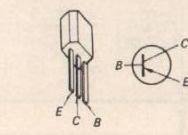

Q012, 113: HZ7B2L

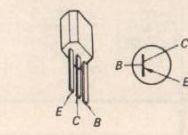

Q013, 114: HZ6B2L

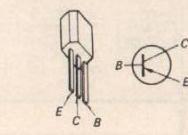

Q014, 115: HZ7B2L

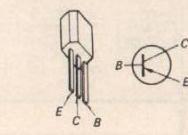

Q015, 116: HZ6B2L

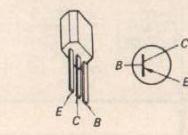

Q016, 117: HZ7B2L

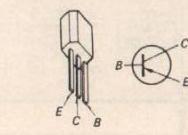

Q017, 118: HZ6B2L

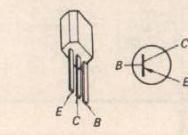

Q018, 119: HZ7B2L

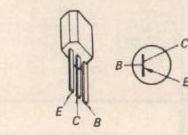

Q019, 120: HZ6B2L

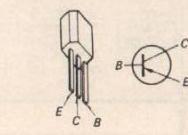

Q020, 121: HZ7B2L

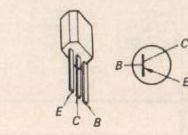

Q021, 122: HZ6B2L

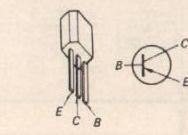

Q022, 123: HZ7B2L

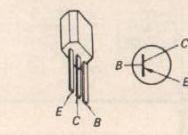

Q023, 124: HZ6B2L

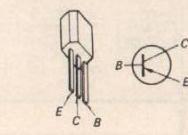

Q024, 125: HZ7B2L

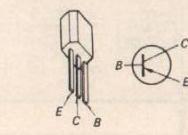

Q025, 126: HZ6B2L

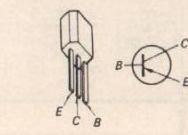

Q026, 127: HZ7B2L

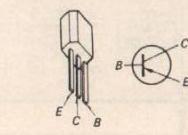

Q027, 128: HZ6B2L

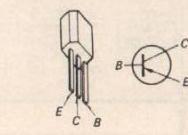

Q028, 129: HZ7B2L

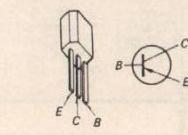

Q029, 130: HZ6B2L

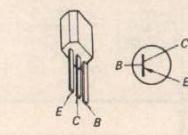

Q030, 131: HZ7B2L

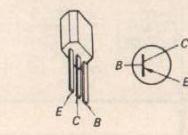

Q031, 132: HZ6B2L

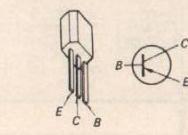

Q032, 133: HZ7B2L

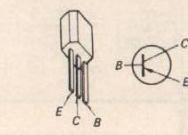

Q033, 134: HZ6B2L

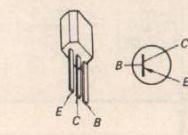

Q034, 135: HZ7B2L

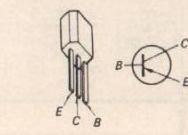

Q035, 136: HZ6B2L

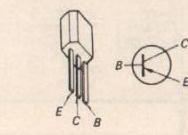

Q036, 137: HZ7B2L

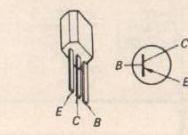

Q037, 138: HZ6B2L

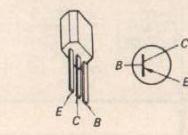

Q038, 139: HZ7B2L

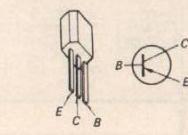

Q039, 140: HZ6B2L

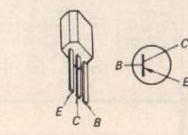

Q040, 141: HZ7B2L

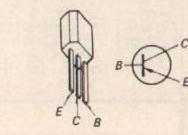

Q041, 142: HZ6B2L

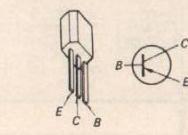

Q042, 143: HZ7B2L

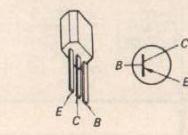

Q043, 144: HZ6B2L

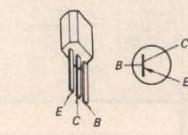

Q044, 145: HZ7B2L

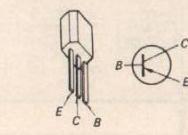

Q045, 146: HZ6B2L

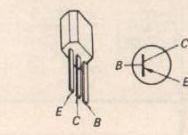

Q046, 147: HZ7B2L

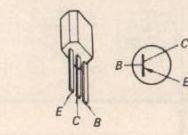

Q047, 148: HZ6B2L

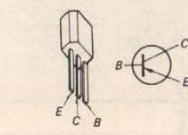

Q048, 149: HZ7B2L

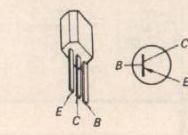

Q049, 150: HZ6B2L

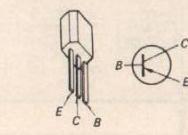

Q050, 151: HZ7B2L

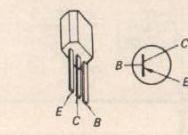

Q051, 152: HZ6B2L

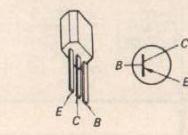

Q052, 153: HZ7B2L

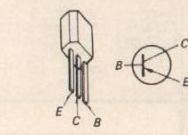

Q053, 154: HZ6B2L

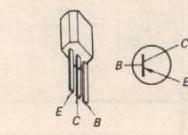

Q054, 155: HZ7B2L

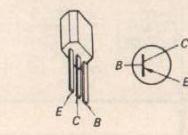

Q055, 156: HZ6B2L


Q056, 157: HZ7B2L

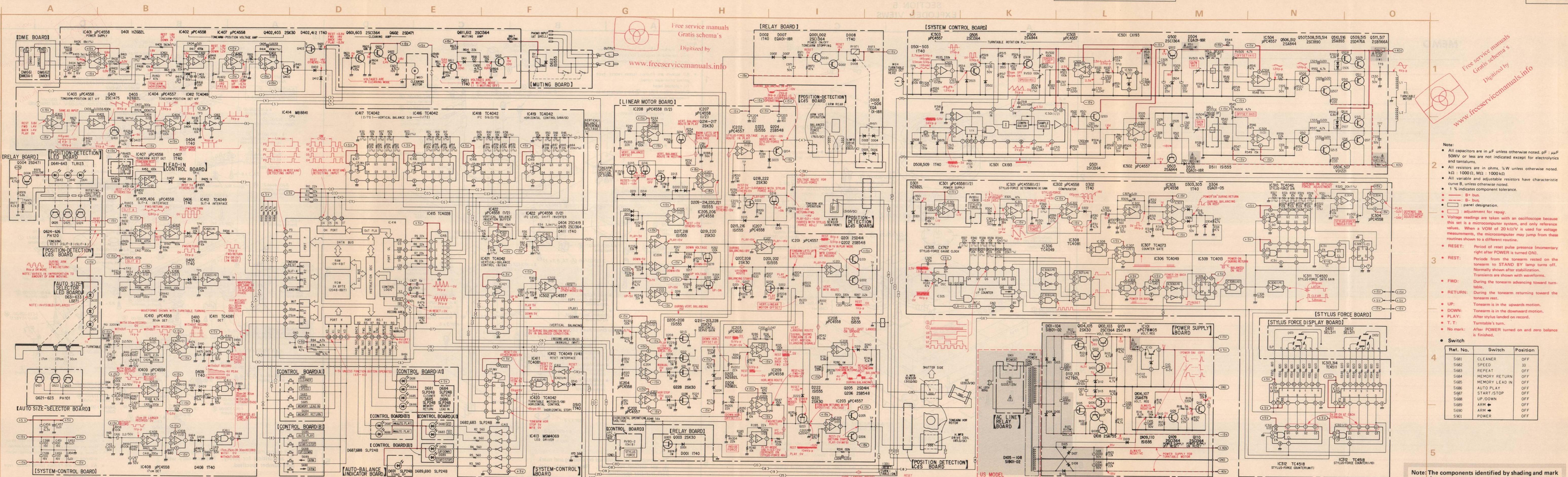

Q057, 158: HZ6B2L


Q058, 159: HZ7B2L


Q059, 160: HZ6B2L


Q060, 161: HZ7B2L

Q061, 162: HZ6B2L



Q062, 163: HZ7B2L

4-4. SCHEMATIC DIAGRAM

ials
s
ny
uals.info

ss otherwise noted. $pF : \mu\mu F$
ated except for electrolytics

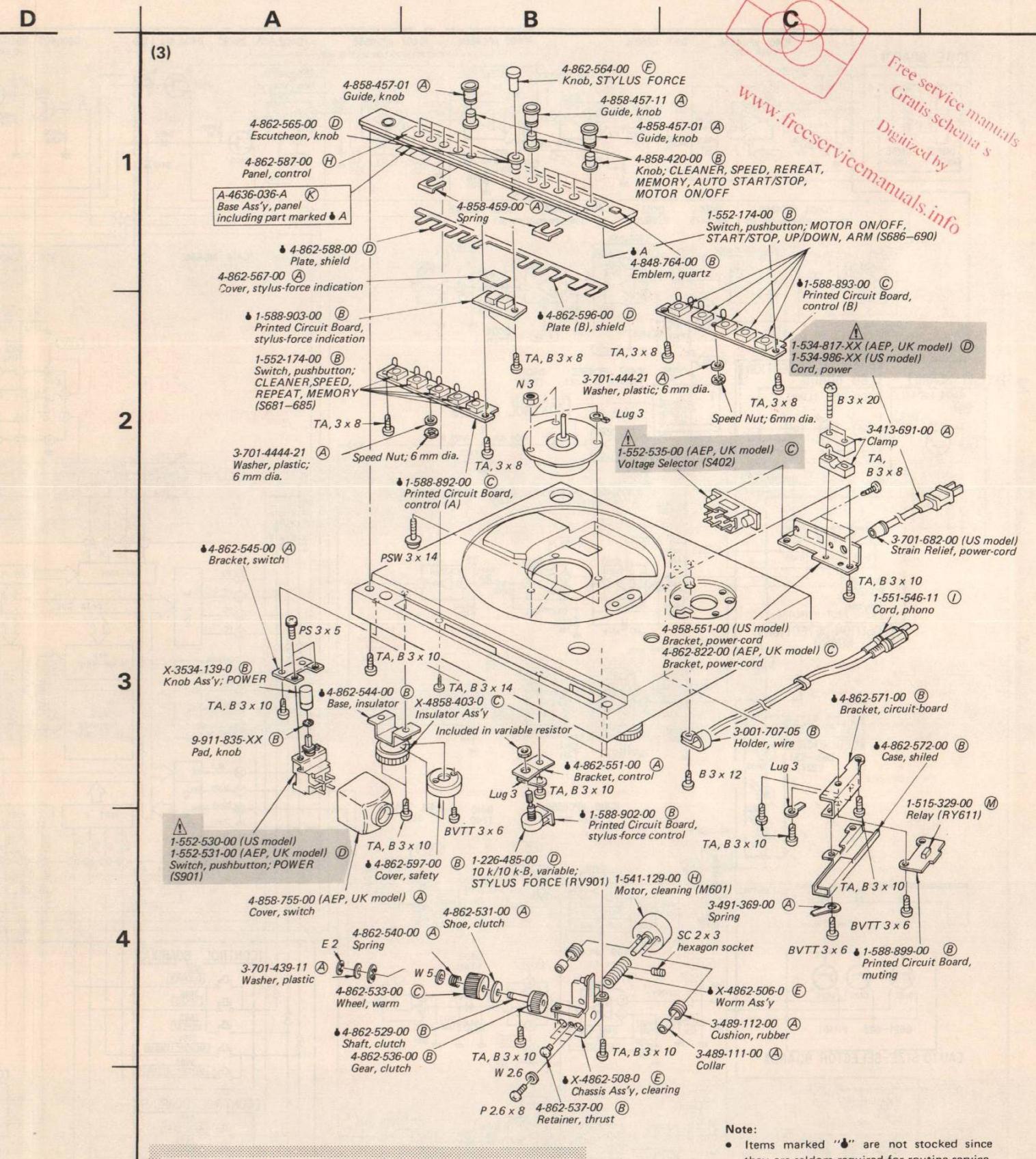
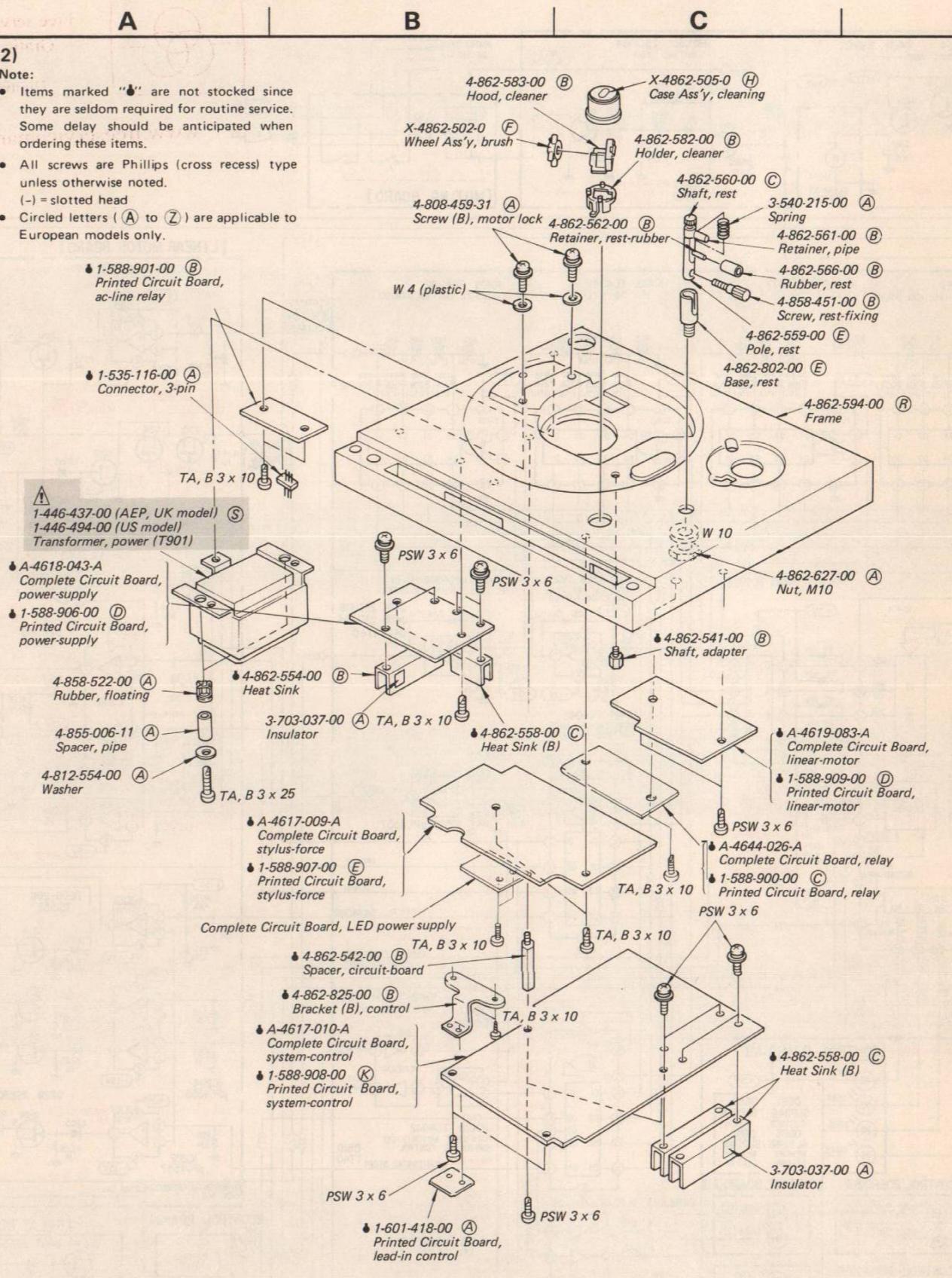
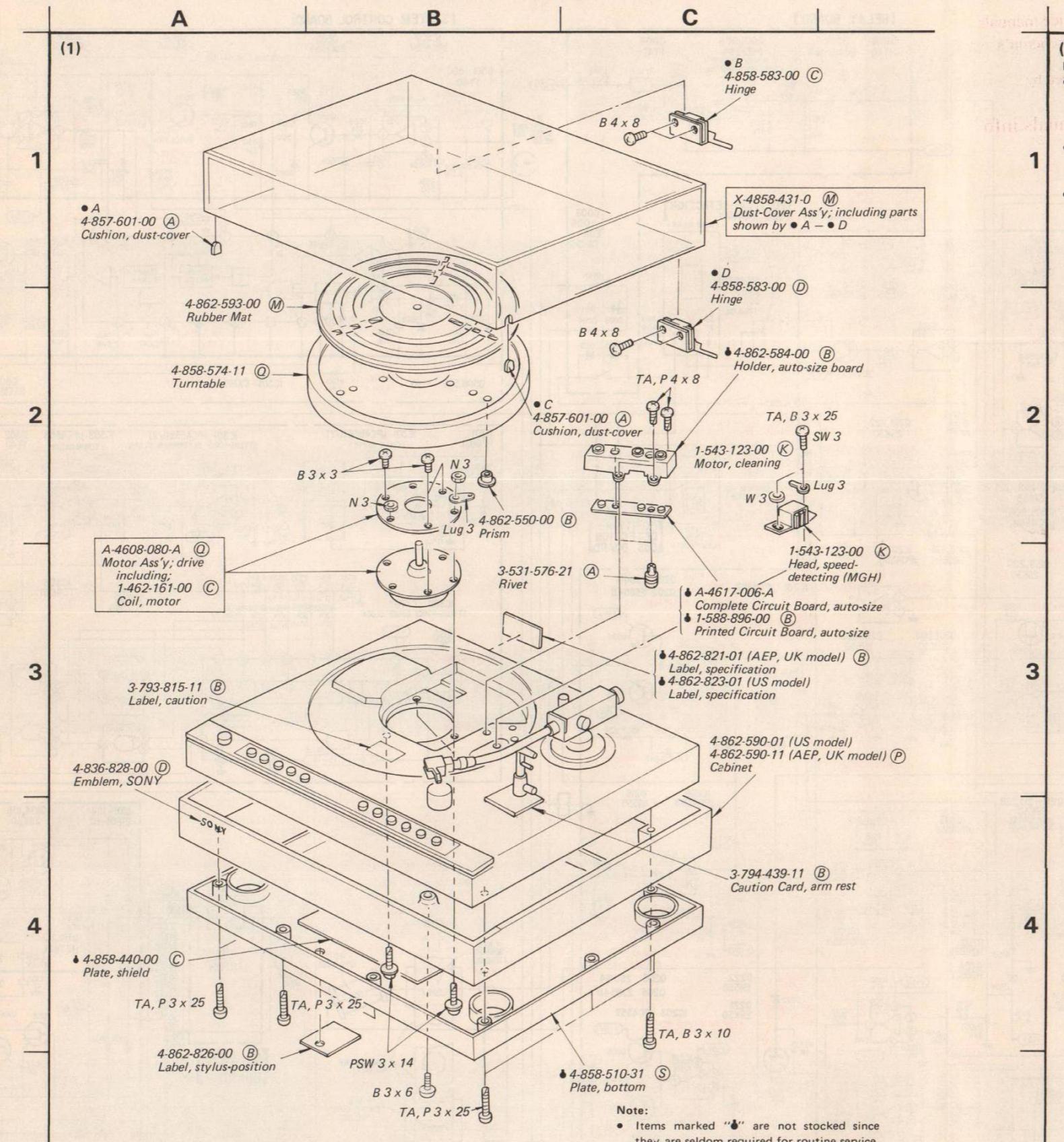
W unless otherwise noted.
resistors have characteristic
ed.
erance.

with an oscilloscope because system, and only reference 0 kΩ/V is used for voltage computer may jump from these routine.

pulse presence (momentary ER is turned ON).

the tonearm rested on the AND BY lamp turns off, after stabilization.

- down with waveforms.
- arm advancing toward turn-
- arm returning toward the
- e upwards motion.
- e downward motion.
- ed on record.




	Position
	OFF
	33
	OFF
	OFF

URN D IN	OFF OFF OFF OFF OFF OFF OFF OFF
-------------	--

by shading and mark
Replace only with

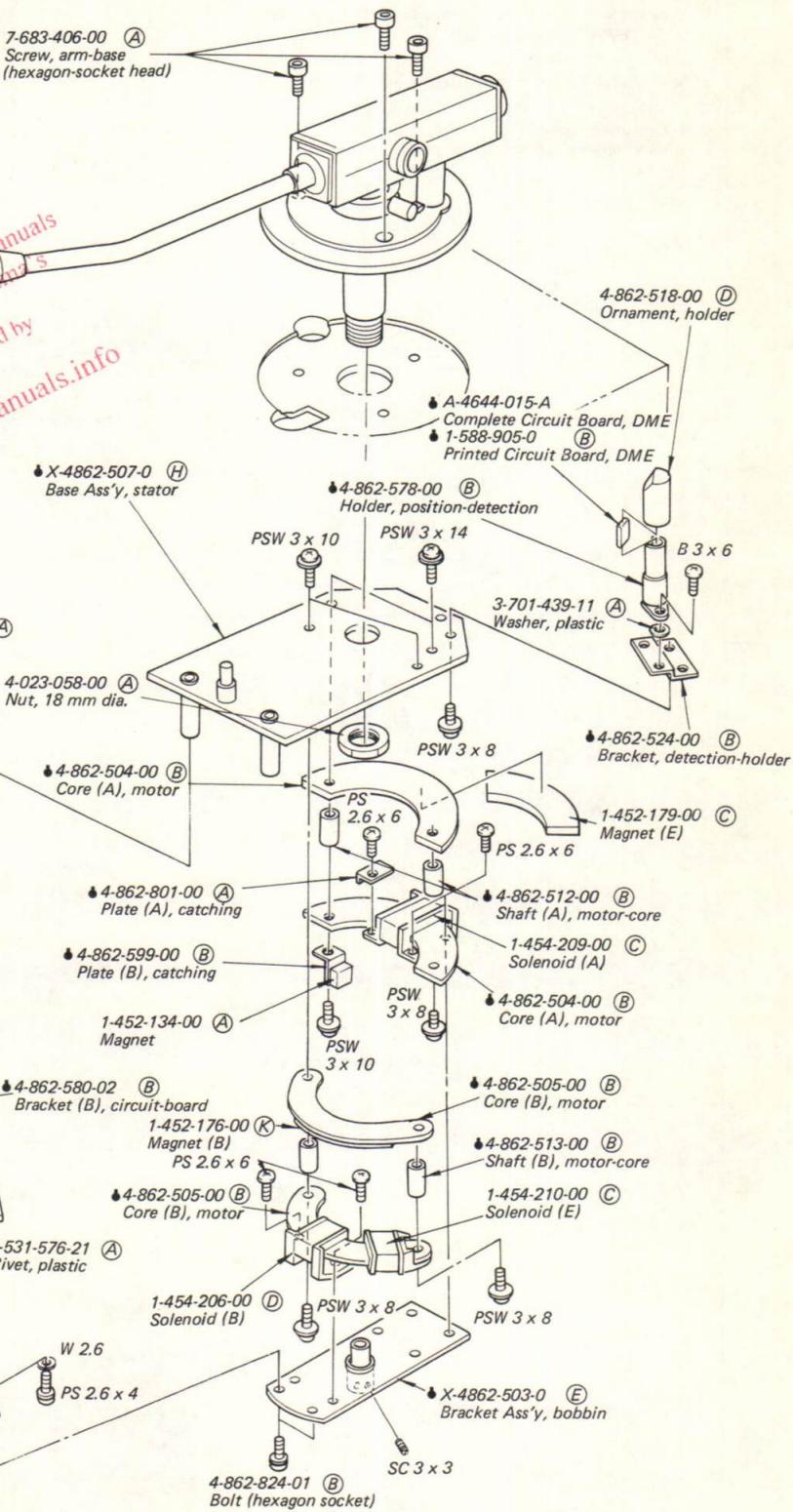
SECTION 5 LOADED VIEWS

MEMO

Note: The components identified by shading and mark are critical for safety. Replace only with part number specified.

A

B


C

D

(4)

Note:

- Items marked “●” are not stocked since they are seldom required for routine service. Some delay should be anticipated when ordering these items.
- All screws are Phillips (cross recess) type unless otherwise noted.
(-) = slotted head
- Circled letters (Ⓐ to Ⓛ) are applicable to European models only.

SECTION 6

ELECTRICAL PARTS LIST

Note: Circled letters (**A** to **Z**) are applicable to European models only.

<u>Ref. No.</u>	<u>Part No.</u>	<u>Description</u>
-----------------	-----------------	--------------------

SEMICONDUCTORS

Transistors

Q001, 002	8-729-663-47	(B) 2SC1364
⇒Q003	8-729-203-04	(B) 2SK30A
⇒Q004	8-760-335-10	(B) 2SC1474
⇒Q101	8-729-316-12	(D) 2SC1061
Q102, 103	8-729-663-47	(B) 2SC1364
⇒Q104, 105	8-729-203-04	(B) 2SK30A
⇒Q106, 107	8-729-612-77	(B) 2SA1027R
⇒Q108	8-729-317-12	(D) 2SA671
Q109, 110	8-729-663-47	(B) 2SC1364
Q201	8-729-141-43	(B) 2SD414
Q202	8-729-154-83	(C) 2SB548
Q204	8-729-154-83	(C) 2SB548
Q205	8-729-141-43	(B) 2SD414
Q206	8-729-154-83	(C) 2SB548
⇒Q207) 8-729-203-04 (B) 2SK30A	
⇒Q210-222) 8-729-203-04 (B) 2SK30A	
Q401	8-760-413-10	(B) 2SC1475
⇒Q402, 403	8-729-203-04	(B) 2SK30A
Q501, 502	8-729-663-47	(B) 2SC1364
⇒Q503, 504	8-729-612-77	(B) 2SA1027R
Q505	8-729-663-47	(B) 2SC1364
⇒Q506	8-729-612-77	(B) 2SA1027R
⇒Q507, 508	8-720-950-03	(D) 2SC926A
Q509	8-729-307-62	(D) 2SD476A
⇒Q510	8-729-612-77	(B) 2SA1027R
Q511	8-729-306-62	(D) 2SB566A
⇒Q512	8-729-612-77	(B) 2SA1027R
⇒Q513, 514	8-720-950-03	(D) 2SC926A
Q515	8-729-307-62	(D) 2SD476A
⇒Q516	8-729-612-77	(B) 2SA1027R
Q517	8-729-306-62	(D) 2SB566A
Q601	8-729-663-47	(B) 2SC1364
⇒Q602	8-760-335-10	(B) 2SC1474
Q603) 8-729-663-47 (B) 2SC1364	
Q611, 612) 8-729-663-47 (B) 2SC1364	

<u>Ref. No.</u>	<u>Part No.</u>	<u>Description</u>
-----------------	-----------------	--------------------

⇒Q621-623	8-729-101-01	PH101
Q624-626	8-729-101-02	PH102

ICs

⇒IC101	8-759-143-05	(F) μPC14305H
⇒IC201-203	8-759-145-57	(D) μPC4557C
⇒IC204-207	8-759-145-58	(D) μPC4558C
⇒IC208	8-759-700-58	(D) NJM4558DFA
⇒IC209	8-759-145-58	(D) μPC4558C
IC301-304	8-759-145-58	(D) μPC4558C
IC305	8-759-907-67	(I) CX767
⇒IC306	8-759-140-49	(C) μPD4049C
⇒IC307	8-759-240-73	(C) TC4073BP
⇒IC308	8-759-240-81	(D) TC4081BP
⇒IC309	8-759-240-13	(D) TC4013BP
⇒IC310	8-759-240-42	(F) TC4042BP
⇒IC311	8-759-245-20	(J) TC4520BP
⇒IC312	8-759-245-18	(J) TC4518BP
⇒IC313, 314	8-759-245-11	(H) TC4511BP
⇒IC401-403	8-759-145-58	(D) μPC4558C
⇒IC404	8-759-145-57	(D) μPC4557C
⇒IC405-410	8-759-145-58	(D) μPC4558C
⇒IC411	8-759-240-81	(D) TC4081BP
⇒IC412	8-759-140-49	(C) μPD4049C
IC413	8-759-904-69	(C) MSM4069
⇒IC414	8-759-981-15	(P) MB8841-125
⇒IC415	8-759-240-28	(J) TC4028BP
⇒IC416-421	8-759-240-42	(F) TC4042BP
⇒IC422	8-759-145-58	(D) μPC4558C
IC501	8-751-930-00	(K) CX193
⇒IC502-504	8-759-145-57	(D) μPC4557C

Diodes

⇒D001, 002	8-719-815-55	(B) 1S1555
⇒D003-007	8-719-931-18	(B) EQB01-18
⇒D008	8-719-815-55	(B) 1S1555
⇒D101-108	8-719-200-02	(B) 10E2
D109, 110	8-719-815-55	(B) 1S1555
D112, 113	8-719-910-75	(B) HZ7B2L

Note: The components identified by shading and mark are critical for safety. Replace only with part number specified.

⇒: Due to standardization, interchangeable replacements may be substituted for parts specified in the diagrams.

Note: Circled letters (**A** to **Z**) are applicable to European models only.

<u>Ref. No.</u>	<u>Part No.</u>	<u>Description</u>
D201, 202	8-719-815-55 (B) 1S1555	
D203, 204	8-719-910-65 (B) HZ6B2L	
D205-223	8-719-815-55 (B) 1S1555	
D301	8-719-910-65 (B) HZ6B2L	
⇒ D302, 303	8-719-815-55 (B) 1S1555	
⇒ D304	8-719-931-05 (B) EQB01-05	
⇒ D305	8-719-815-55 (B) 1S1555	
D401	8-719-910-65 (B) HZ6B2L	
⇒ D402	8-719-815-55 (B) 1S1555	
D403	8-719-910-65 (B) HZ6B2L	
⇒ D404-410	8-719-815-55 (B) 1S1555	
⇒ D412	8-719-815-55 (B) 1S1555	
⇒ D501-503	8-719-815-55 (B) 1S1555	
⇒ D504, 505	8-719-931-18 (B) EQB01-18	
D506, 507	8-719-122-10 (B) VD1221	
⇒ D508-511	8-719-815-55 (B) 1S1555	
D611, 612	8-719-103-03 (C) SE303A	
D641-643	8-719-812-31 (B) TLR123	
D651, 652	8-719-305-11 (E) SEL511	
D681-691	8-719-900-24 (C) SLP24B	
DM661, 662	8-745-101-01 (C) DM101	

CAPACITORS

All capacitors are in μF and ceramic unless otherwise noted.
50 WV or less are not indicated except for electrolytics.
pF: $\mu\mu\text{F}$, elect: electrolytic

C101, 102	△ 1-123-155-00 (B) 6800	35V	elect
C103, 104	△ 1-123-364-00 (B) 1000	50V	elect
C105	1-123-351-00 (B) 0.47	50V	elect
C106, 107	1-123-306-00 (B) 47	10V	elect
C108, 109	1-123-321-00 (B) 220	16V	elect
C110	1-123-298-00 (B) 470	6.3V	elect
C111	1-123-328-00 (B) 4.7	25V	elect
C112	1-123-352-00 (B) 1	50V	elect
C201, 202	1-108-595-00 (B) 0.047		mylar
C203, 204	1-123-320-00 (B) 100	16V	elect

⇒ : Due to standardization, interchangeable replacements may be substituted for parts specified in the diagrams.

<u>Ref. No.</u>	<u>Part No.</u>	<u>Description</u>
C205	1-108-571-00 (B) 0.0047	mylar
C206	1-108-587-00 (B) 0.022	mylar
C207	1-123-320-00 (B) 100	16V
C291	1-102-112-00 (A) 330p	elect
C301	1-123-351-00 (B) 0.47	50V
C302	1-123-232-00 (B) 4.7	50V
C303	1-123-230-00 (B) 2.2	50V
C304	1-123-352-00 (B) 1	50V
C305, 306	1-102-110-00 (A) 220p	
C307	1-101-004-00 (A) 0.01	
C401, 402	1-123-319-00 (B) 47	16V
C403	1-123-228-00 (B) 1	50V
C404	1-108-239-00 (A) 0.01	mylar
C405	1-108-567-00 (B) 0.0033	mylar
C406	1-130-062-00 (B) 0.0056	630V
C407	1-107-096-00 (A) 300p	50V
C409, 410	1-102-112-00 (A) 330p	
C411-413	1-123-351-00 (B) 0.47	50V
C414-417	1-123-353-00 (B) 2.2	50V
C418	1-102-112-00 (A) 330p	
C419, 420	1-123-353-00 (B) 2.2	50V
C421	1-102-112-00 (A) 330p	
C422, 423	1-123-353-00 (B) 2.2	50V
C424	1-102-112-00 (A) 330p	
C425	1-123-353-00 (B) 2.2	50V
C426, 427	1-102-943-00 (A) 6p	
C451	1-123-320-00 (B) 100	16V
C452	1-108-239-00 (A) 0.01	mylar
C453	1-123-320-00 (B) 100	16V
C454, 455	1-108-239-00 (A) 0.01	mylar
C456	1-123-295-00 (B) 100	6.3V
C457	1-108-239-00 (A) 0.01	mylar
C498	1-123-228-00 (B) 1	50V
C501	1-131-211-00 (B) 0.22	35V
C502	1-108-242-00 (A) 0.022	mylar
C503	1-131-213-00 (B) 0.47	35V
C504	1-108-239-00 (A) 0.01	mylar
C505	1-123-329-00 (B) 10	25V

Note: The components identified by shading and mark are critical for safety. Replace only with part number specified.

Note: Circled letters (A to Z) are applicable to European models only.

Ref. No.	Part No.	Description		
C506	1-123-332-00	(A) 47	25V	elect
C507	1-123-345-00	(B) 100	35V	elect
C508	1-123-329-00	(B) 10	25V	elect
C509	1-123-332-00	(A) 47	25V	elect
C510	1-123-345-00	(B) 100	35V	elect
C511	1-101-081-00	(A) 130p		
C512	1-102-491-00	(A) 51p		
C513	1-101-081-00	(A) 130p		
C514	1-123-299-00	(B) 1000	6.3V	elect
C515	1-108-239-00	(A) 0.01		mylar
C516	1-108-246-00	(A) 0.047		mylar
C517	1-108-239-00	(A) 0.01		mylar
C518	1-130-188-00	(B) 0.01	100V	plastic
C519	1-108-227-00	(A) 0.001		mylar
C520	1-131-213-00	(B) 0.47	35V	tantalum
C521	1-108-246-00	(A) 0.047		mylar
C522	1-123-316-00	(B) 10	16V	elect
C523	1-108-239-00	(A) 0.01		mylar
C524	1-108-246-00	(A) 0.047		mylar
C526	1-123-228-00	(B) 1	50V	elect (nonpolarized)
C528, 529	1-108-227-00	(A) 0.001		mylar
C530, 531	1-123-228-00	(B) 1	50V	elect (nonpolarized)
C532, 533	1-108-227-00	(A) 0.001		mylar
C535	1-123-228-00	(B) 1	50V	elect (nonpolarized)
C536	1-123-352-00	(B) 1	50V	elect
C597	1-123-295-00	(B) 100	6.3V	elect
C598, 599	1-123-320-00	(B) 100	16V	elect
C601	1-123-306-00	(B) 47	10V	elect
C602	1-123-328-00	(B) 4.7	25V	elect
C901	1-130-196-00	(D) 0.01	300V	Polyethylene (AEP, UK model)
C901	▲1-108-750-00	(B) 0.033	125V	mylar (US model)
C902	▲1-130-196-00	(D) 0.01	300V	Polyethylene (AEP, UK model)
C971	1-123-352-00	(B) 1	50V	elect

Ref. No.	Part No.	Description					
RESISTORS							
All resistors are in ohms. Common 1/4W carbon resistors are omitted. Refer to the list on page 66 for their part numbers. kΩ: 1000 Ω, MΩ: 1000 kΩ.							
R14	1-214-163-00	(A) 20k	1/4W(1%) metal oxide				
R15	1-214-156-00	(A) 10k	1/4W(1%) metal oxide				
R16	1-214-163-00	(A) 20k	1/4W(1%) metal oxide				
R17	1-214-156-00	(A) 10k	1/4W(1%) metal oxide				
R18	1-214-163-00	(A) 20k	1/4W(1%) metal oxide				
R19	1-214-156-00	(A) 10k	1/4W(1%) metal oxide				
R20	1-214-163-00	(A) 20k	1/4W(1%) metal oxide				
R21	1-214-156-00	(A) 10k	1/4W(1%) metal oxide				
R22	1-214-163-00	(A) 20k	1/4W(1%) metal oxide				
R23	1-214-156-00	(A) 10k	1/4W(1%) metal oxide				
R24	1-214-163-00	(A) 20k	1/4W(1%) metal oxide				
R25	1-214-156-00	(A) 10k	1/4W(1%) metal oxide				
R26	1-214-163-00	(A) 20k	1/4W(1%) metal oxide				
R27	1-214-156-00	(A) 10k	1/4W(1%) metal oxide				
R28	1-214-163-00	(A) 20k	1/4W(1%) metal oxide				
R29	1-214-156-00	(A) 10k	1/4W(1%) metal oxide				
R30	1-214-163-00	(A) 20k	1/4W(1%) metal oxide				
R31	1-214-152-00	(A) 6.8 k	1/4W(1%) metal oxide				
R32	1-214-156-00	(A) 10k	1/4W(1%) metal oxide				
R33	1-214-148-00	(B) 4.7k	1/4W(1%) metal oxide				
R34	1-214-146-00	(A) 3.9k	1/4W(1%) metal oxide				
R35	1-214-163-00	(A) 20k	1/4W(1%) metal oxide				
R36	1-214-156-00	(A) 10k	1/4W(1%) metal oxide				
R37	1-214-163-00	(A) 20k	1/4W(1%) metal oxide				
R38	1-214-156-00	(A) 10k	1/4W(1%) metal oxide				
R39	1-214-163-00	(A) 20k	1/4W(1%) metal oxide				
R40	1-214-156-00	(A) 10k	1/4W(1%) metal oxide				
R41	1-214-163-00	(A) 20k	1/4W(1%) metal oxide				
R42	1-214-156-00	(A) 10k	1/4W(1%) metal oxide				
R43-45	1-214-163-00	(A) 20k	1/4W(1%) metal oxide				
R46	1-214-156-00	(A) 10k	1/4W(1%) metal oxide				
R47	1-214-163-00	(A) 20k	1/4W(1%) metal oxide				
R48	1-214-156-00	(A) 10k	1/4W(1%) metal oxide				
R49	1-214-163-00	(A) 20k	1/4W(1%) metal oxide				

Note: The components identified by shading and mark are critical for safety. Replace only with part number specified.

Note: Circled letters (**A** to **Z**) are applicable to European models only.

Ref. No.	Part No.	Description		
R50	1-214-156-00	(A) 10k	1/4W(1%) metal oxide	
R51	1-214-163-00	(A) 20k	1/4W(1%) metal oxide	
R60	1-214-166-00	(A) 27k	1/4W(1%) metal oxide	
R61	1-213-135-00	(A) 220	1W metal oxide (nonflammable)	
R122, 123	1-217-422-00	1	1/2W fusible (nonflammable)	
R124	1-206-471-00	22	2W metal oxide (nonflammable)	
R210	1-212-369-00	5.6	1W metal oxide (nonflammable)	
R302	1-214-180-00	(A) 100k	1/4W(1%) metal oxide	
R303	1-214-162-00	(A) 18k	1/4W(1%) metal oxide	
R319	1-214-156-00	(A) 10k	1/4W(1%) metal oxide	
R320-327	1-214-163-00	(A) 20k	1/4W(1%) metal oxide	
R328-331	1-214-156-00	(A) 10k	1/4W(1%) metal oxide	
R332-337	1-214-163-00	(A) 20k	1/4W(1%) metal oxide	
R338-340	1-214-156-00	(A) 10k	1/4W(1%) metal oxide	
R342	1-214-156-00	(A) 10k	1/4W(1%) metal oxide	
R359, 360	1-214-180-00	(A) 100k	1/4W(1%) metal oxide	
R402	1-214-180-00	(A) 100k	1/4W(1%) metal oxide	
R403	1-214-163-00	(A) 20k	1/4W(1%) metal oxide	
R404, 405	1-214-143-00	(A) 3k	1/4W(1%) metal oxide	
R406	1-214-162-00	(A) 18k	1/4W(1%) metal oxide	
R407, 408	1-214-156-00	(A) 10k	1/4W(1%) metal oxide (nonflammable)	
R410	1-214-122-00	(B) 390	1/4W(1%) metal oxide (nonflammable)	
R411	1-214-162-00	(A) 18k	1/4W(1%) metal oxide	
R412, 413	1-214-164-00	(A) 22k	1/4W(1%) metal oxide	
R414	1-214-180-00	(A) 100k	1/4W(1%) metal oxide	
R415	1-214-164-00	(A) 22k	1/4W(1%) metal oxide	
R419	1-214-164-00	(A) 22k	1/4W(1%) metal oxide	
R422, 423	1-214-164-00	(A) 22k	1/4W(1%) metal oxide	
R424	1-212-702-00	(B) 100k	1/4W(1%) metal oxide	
R425	1-214-132-00	(B) 1k	1/4W(1%) metal oxide (nonflammable)	
R426	1-214-140-00	(A) 2.2k	1/4W(1%) metal oxide (nonflammable)	

Ref. No.	Part No.	Description		
R511	1-213-142-00	(A) 820	1W metal oxide (nonflammable)	
R513	1-213-142-00	(A) 820	1W metal oxide (nonflammable)	
R514	1-206-649-00	(A) 240	2W metal oxide (nonflammable)	
R524	1-212-713-00	(B) 300k	1/2W(1%) metal oxide	
R525	1-214-176-00	(A) 68k	1/4W(1%) metal oxide	
R560, 561	1-217-465-00	(B) 0.47	1W fusible (nonflammable)	
R973	1-244-861-00	(A) 330	1/2W carbon	
R978	1-244-857-00	(A) 220	1/2W carbon	
RV201, 202	1-224-646-XX	(B) 22k-B, adjustable; vert. linear motor offset, down hor. offset (2)		
RV203	1-224-491-00	(B) 22k-B, adjustable; vert. balance offset		
RV204, 205	1-224-646-XX	(B) 22k-B, adjustable; inside force, down hor. offset (1)		
RV301, 302	1-224-646-XX	(B) 22k-B, adjustable; stylus force, stylus force indication		
RV401	1-224-661-00	(B) 47k-B, adjustable; tonearm hor.		
RV402	1-224-491-00	(B) 22k-B, adjustable; IRQ. freq.		
RV403, 404	1-224-663-00	(B) 470k-B, adjustable; slit A, B		
RV405	1-224-492-00	(B) 100k-B, adjustable; arm-rest signal		
RV406	1-224-254-00	(B) 47k-B, adjustable; lead in		
RV501, 502	1-224-492-00	(B) 100k-B, adjustable; speed (45),(33)		
RV503-506	1-224-644-XX	(B) 4.7k-B, adjustable; gain (H1), (H2) offset (H1), (H2)		
RV901	1-226-485-00	10k/10k-B, variable; STYLUS FORCE		
SWITCHES				
S402	1-552-535-00	(C) Voltage Selector (AEP, UK model)		
S681-685	1-552-174-00	(B) Pushbutton; CLEANER; SPEED, REPEAT, MEMORY		
S686-690	1-552-174-00	(B) Pushbutton; MOTOR ON/OFF, START/STOP, UP/DOWN, ARM		
S901	1-552-530-00	Pushbutton; POWER (US model)		
S901	1-552-531-00	(D) Pushbutton; POWER (AEP, UK model)		

Note: The components identified by shading and mark **▲** are critical for safety. Replace only with part number specified.

Note: Circled letters (A) to (Z) are applicable to European models only.

<u>Ref. No.</u>	<u>Part No.</u>	<u>Description</u>
MISCELLANEOUS		
M601	1-541-129-00	(H) Motor, cleaning
MGH	1-543-123-00	(K) Head, speed-detecting
RY611	1-515-329-00	(M) Relay
RY971	1-515-328-00	(G) Relay
T901	▲1-446-437-00	(S) Transformer, power (AEP, UK model)
T901	▲1-446-494-00	Transformer, power (US model)
TH971	1-800-202-XX	(A) Thermistor, S-10k
XT501	1-527-380-21	(D) Crystal, OSC
	A-4608-080-A	(Q) Motor Ass'y, drive including:
	1-462-161-00	(C) Coil, motor
	1-452-134-00	(B) Magnet
	1-452-175-00	(J) Magnet (A)
	1-452-176-00	(K) Magnet (B)
	1-452-177-00	(D) Magnet (C)
	1-452-178-00	(D) Magnet (D)
	1-452-179-00	(C) Magnet (E)
	1-454-206-00	(D) Solenoid (B)
	1-454-207-00	(C) Solenoid (C)
	1-454-208-00	(D) Solenoid (D)
	1-454-209-00	(C) Solenoid (A)
	1-454-210-00	(C) Solenoid (E)
	1-462-161-00	(D) Coil, motor
	▲1-534-817-XX	(D) Cord, power (AEP, UK model)
	▲1-534-986-XX	Cord, power (US model)
	1-551-546-11	(I) Cord, phono
	1-561-201-00	Connector, neck-cylinder
<ul style="list-style-type: none"> Items marked "▲" are not stocked since they are seldom required for routine service. Some delay should be anticipated when ordering these items. 		
<p>Note: The components identified by shading and mark ▲ are critical for safety. Replace only with part number specified.</p>		

<u>Part No.</u>	<u>Description</u>
▲1-588-892-00	(C) Printed Circuit Board, control (A)
▲1-588-893-00	(C) Printed Circuit Board, control (B)
▲1-588-894-00	(B) Printed Circuit Board, position detection CdS
▲1-588-895-00	(B) Printed Circuit Board, position detection LED
▲1-588-896-00	(B) Printed Circuit Board, auto-size
▲1-588-897-00	(B) Printed Circuit Board, auto-size LED
▲1-588-898-00	(A) Printed Circuit Board, indicator
▲1-588-899-00	(B) Printed Circuit Board, muting
▲1-588-900-00	(C) Printed Circuit Board, relay
▲1-588-901-00	(B) Printed Circuit Board, AC-line relay
▲1-588-902-00	(B) Printed Circuit Board, stylus-force control
▲1-588-903-00	(B) Printed Circuit Board, stylus-force indication
▲1-588-905-00	(B) Printed Circuit Board, DME
▲1-588-906-00	(D) Printed Circuit Board, power supply
▲1-588-907-00	(E) Printed Circuit Board, stylus force
▲1-588-908-00	(K) Printed Circuit Board, system-control
▲1-588-909-00	(D) Printed Circuit Board, linear-motor
▲1-601-418-00	(A) Printed Circuit Board, lead-in control
ACCESSORIES AND PACKING MATERIALS	
<u>Part No.</u>	<u>Description</u>
3-701-613-00	(A) Bag, plastic
3-701-614-00	(A) Bag, plastic
3-701-616-00	(A) Bag, plastic
3-701-630-00	(A) Bag, plastic
3-701-634-00	(A) Bag, plastic
3-770-718-11	(K) Manual, instruction (AEP, UK model)
3-770-718-21	Manual, instruction (US model)
4-808-461-00	(E) Adaptor, 45 rpm
4-862-516-00	(D) Weight, sub
4-862-805-00	(B) Cushion, upper
4-862-806-00	(B) Cushion, lower
4-862-807-00	(B) Protector
4-862-808-00	(C) Bag, protection
4-862-809-00	(B) Protector (A)
4-862-810-00	(B) Protector (B)
4-862-811-00	(A) Sheet, protection
4-862-812-00	(A) Sheet (A), protection
4-862-817-00	(A) Sheet (B), protection

ELECTROLYTIC CAPACITORS

Note: Circled letter (Ⓐ to Ⓛ) are applicable to European models only.

CAP. (μF)	RATING					
	6.3 VOLT.	10 VOLT.	16 VOLT.	25 VOLT.	35 VOLT.	50 VOLT.
PART No.	PART No.	PART No.	PART No.	PART No.	PART No.	PART No.
0.47						→ 1-121-726-00 Ⓛ
1.0						→ 1-121-391-00 Ⓛ
2.2						→ 1-121-450-00 Ⓛ
3.3	→	→	→	1-121-392-00 Ⓛ		→ 1-121-393-00 Ⓛ
4.7	→	→	→	1-121-395-00 Ⓛ		→ 1-121-396-00 Ⓛ
10	→	→	1-121-651-00 Ⓛ	1-121-398-00 Ⓛ	→ 1-121-738-00 Ⓛ	
22	→	→	1-121-479-00 Ⓛ	1-121-480-00 Ⓛ	1-121-662-00 Ⓛ	1-121-152-00 Ⓛ
33	→	→	1-121-403-00 Ⓛ	1-121-404-00 Ⓛ	1-121-652-00 Ⓛ	1-121-405-00 Ⓛ
47	→	1-121-352-00 Ⓛ	1-121-409-00 Ⓛ	1-121-410-00 Ⓛ	1-121-653-00 Ⓛ	1-121-411-00 Ⓛ
100	→	1-121-414-00 Ⓛ	1-121-415-00 Ⓛ	1-121-416-00 Ⓛ	1-121-357-00 Ⓛ	1-121-417-00 Ⓛ
220	1-121-419-00 Ⓛ	1-121-420-00 Ⓛ	1-121-421-00 Ⓛ	1-121-422-00 Ⓛ	1-121-261-00 Ⓛ	1-121-423-00 Ⓛ
330	1-121-751-00 Ⓛ	1-121-805-00 Ⓛ	1-121-521-00 Ⓛ	1-121-654-00 Ⓛ	1-121-655-00 Ⓛ	1-121-656-00 Ⓛ
470	1-121-424-00 Ⓛ	1-121-425-00 Ⓛ	1-121-426-00 Ⓛ	1-121-733-00 Ⓛ	1-121-361-00 Ⓛ	1-121-810-00 Ⓛ
1000	—	1-121-736-00 Ⓛ	1-121-245-00 Ⓛ	1-121-657-00 Ⓛ	1-121-388-00 Ⓛ	1-123-061-00 Ⓛ
2200	1-121-658-00 Ⓛ	1-121-659-00 Ⓛ	1-121-660-00 Ⓛ	1-123-067-00 Ⓛ	1-121-984-00 Ⓛ	—
3300	1-121-661-00 Ⓛ	1-123-075-00 Ⓛ	1-123-071-00 Ⓛ	—	—	—

CAP. (μF)	100 VOLT.	160 VOLT.	250 VOLT.	350 VOLT.
	PART No.	PART No.	PART No.	PART No.
0.47	—	—	—	—
1.0	1-123-249-00 Ⓛ	1-123-252-00 Ⓛ	1-123-003-00 Ⓛ	1-121-168-00 Ⓛ
2.2	1-123-250-00 Ⓛ	1-123-026-00 Ⓛ	—	1-123-028-00 Ⓛ
3.3	1-121-995-00 Ⓛ	—	1-123-004-00 Ⓛ	1-123-006-00 Ⓛ
4.7	1-123-255-00 Ⓛ	1-121-246-00 Ⓛ	1-121-759-00 Ⓛ	1-123-007-00 Ⓛ
10	1-121-126-00 Ⓛ	1-121-999-00 Ⓛ	1-123-254-00 Ⓛ	1-123-008-00 Ⓛ
22	1-121-996-00 Ⓛ	1-123-253-00 Ⓛ	1-123-005-00 Ⓛ	1-123-022-00 Ⓛ
33	1-121-997-00 Ⓛ	1-121-757-00 Ⓛ	—	—
47	1-123-251-00 Ⓛ	1-121-919-00 Ⓛ	—	—
100	1-123-084-00 Ⓛ	—	—	—

CERAMIC CAPACITORS Ⓛ

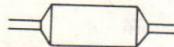
CAP. (pF)	RATING					
	50 VOLT.	CAP. (pF)	50 VOLT.	CAP. (pF)	50 VOLT.	CAP. (pF)
PART No.	PART No.		PART No.		PART No.	
0.5	1-101-837-00	22	1-102-959-00	150	1-101-361-00	0.001
0.75	1-101-586-00	24	1-102-960-00	160	1-101-367-00	0.0012
1.0	1-102-934-00	27	1-102-961-00	180	1-102-976-00	0.0015
1.5	1-101-576-00	30	1-102-962-00	200	1-102-977-00	0.0018
2.0	1-102-935-00	33	1-102-963-00	220	1-102-978-00	0.0022
3	1-102-936-00	36	1-102-964-00	240	1-102-979-00	0.0027
4	1-102-937-00	39	1-102-965-00	270	1-102-980-00	0.0033
5	1-102-942-00	43	1-102-966-00	300	1-102-981-00	0.0039
6	1-102-943-00	47	1-101-880-00	330	1-102-820-00	0.0047
7	1-102-944-00	51	1-101-882-00	360	1-102-821-00	0.0056
8	1-102-945-00	56	1-101-884-00	390	1-102-822-00	0.0068
9	1-102-946-00	62	1-101-886-00	430	1-102-823-00	0.0082
10	1-102-947-00	68	1-101-888-00	470	1-102-824-00	0.01
11	1-102-948-00	75	1-101-890-00	510	1-101-059-00	0.022
12	1-102-949-00	82	1-102-971-00	560	1-102-115-00	0.047
13	1-102-950-00	91	1-102-972-00	680	1-102-116-00	
15	1-102-951-00	100	1-102-973-00	820	1-102-117-00	
16	1-102-952-00	110	1-102-815-00			
18	1-102-953-00	120	1-102-816-00			
20	1-102-958-00	130	1-101-081-00			

0.001μF = 1,000pF

CERAMIC (SEMICONDUCTOR) CAPACITORS Ⓛ

CAP. (μF)	RATING					
	25 VOLT.	50 VOLT.	CAP. (μF)	25 VOLT.	50 VOLT.	CAP. (μF)
PART No.	PART No.	PART No.		PART No.	PART No.	
0.001	→	1-161-039-00	0.018	1-161-016-00	1-161-054-00	
0.0012	→	1-161-040-00	0.022	1-161-017-00	1-161-055-00	
0.0015		1-161-041-00	0.027	1-161-018-00	1-161-056-00	
0.0018		1-161-042-00	0.033	1-161-019-00	1-161-057-00	
0.0022		1-161-043-00	0.039	1-161-010-00	1-161-058-00	
0.0027	→	1-161-044-00	0.047	1-161-021-00	1-161-059-00	
0.0033	→	1-161-045-00	0.056	→	1-161-060-00	
0.0039	→	1-161-046-00	0.068	→	1-161-061-00	
0.0047	→	1-161-047-00	0.082	1-161-024-00	1-161-062-00	
0.0056	→	1-161-048-00	0.1	1-161-025-00	1-161-063-00	
0.0068	→	1-161-049-00				
0.0082	1-161-012-00	1-161-050-00				
0.01	1-161-013-00	1-161-051-00				
0.012	→	1-161-052-00				
0.015	1-161-015-00	1-161-053-00				

MYLAR CAPACITORS (A)


Note: Circled letters (Ⓐ to Ⓛ) are applicable to European models only.

CAP. (μF)	RATING			CAP. (μF)	RATING			CAP. (μF)	RATING		
	50 VOLT.	100 VOLT.	200 VOLT.		PART No.	PART No.	PART No.		PART No.	PART No.	PART No.
0.001	1-108-227-00	1-108-365-00	1-108-409-00	0.01	1-108-239-00	1-108-377-00	1-108-421-00	0.1	1-108-251-00	1-108-389-00	1-108-433-00
0.0012	1-108-351-00	1-108-366-00	1-108-410-00	0.012	1-108-357-00	1-108-378-00	1-108-422-00	0.12	1-108-363-00	1-108-390-00	1-108-434-00
0.0015	1-108-228-00	1-108-367-00	1-108-411-00	0.015	1-108-240-00	1-108-379-00	1-108-423-00	0.15	1-108-252-00	1-108-391-00	1-108-435-00
0.0018	1-108-352-00	1-108-368-00	1-108-412-00	0.018	1-108-358-00	1-108-380-00	1-108-424-00	0.18	1-108-364-00	1-108-392-00	1-108-436-00
0.0022	1-108-230-00	1-108-369-00	1-108-413-00	0.022	1-108-242-00	1-108-381-00	1-108-425-00	0.22	1-108-254-00	1-108-393-00	1-108-437-00
0.0027	1-108-353-00	1-108-370-00	1-108-414-00	0.027	1-108-359-00	1-108-382-00	1-108-426-00	0.27	1-108-854-00	—	—
0.0033	1-108-232-00	1-108-371-00	1-108-415-00	0.033	1-108-244-00	1-108-383-00	1-108-427-00	0.33	1-108-855-00	—	—
0.0039	1-108-354-00	1-108-372-00	1-108-416-00	0.039	1-108-360-00	1-108-384-00	1-108-428-00	0.39	1-108-856-00	—	—
0.0047	1-108-234-00	1-108-373-00	1-108-417-00	0.047	1-108-246-00	1-108-385-00	1-108-429-00	0.47	1-108-857-00	—	—
0.0056	1-108-355-00	1-108-374-00	1-108-418-00	0.056	1-108-361-00	1-108-386-00	1-108-430-00				
0.0068	1-108-237-00	1-108-375-00	1-108-419-00	0.068	1-108-249-00	1-108-387-00	1-108-431-00				
0.0082	1-108-356-00	1-108-376-00	1-108-420-00	0.082	1-108-362-00	1-108-388-00	1-108-432-00				

TANTALUM CAPACITORS

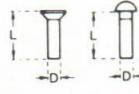
CAP. (μF)	RATING							→ : Use the high voltage rated one.	
	3.15 VOLT.	6.3 VOLT.	10 VOLT.	16 VOLT.	20 VOLT.	25 VOLT.	35 VOLT.		
PART No.	PART No.	PART No.	PART No.	PART No.	PART No.	PART No.	PART No.	PART No.	PART No.
0.01						→		→	1-131-396-00 Ⓛ
0.015						→		→	1-131-397-00 Ⓛ
0.022						→		→	1-131-398-00 Ⓛ
0.033						→		→	1-131-399-00 Ⓛ
0.047						→		→	1-131-400-00 Ⓛ
0.068						→		→	1-131-401-00 Ⓛ
0.1						→		→	1-131-402-00 Ⓛ
0.15						→		→	1-131-403-00 Ⓛ
0.22						→		→	1-131-404-00 Ⓛ
0.33						→		1-131-409-00 Ⓛ	1-131-405-00 Ⓛ
0.47	—	—	—	—	—	1-131-412-00 Ⓛ	—	—	1-131-406-00 Ⓛ
0.68	—	—	—	—	1-131-415-00 Ⓛ	—	1-131-410-00 Ⓛ	—	1-131-407-00 Ⓛ
1.0				1-131-418-00 Ⓛ	—	1-131-413-00 Ⓛ	—	—	1-131-408-00 Ⓛ
1.5					1-131-416-00 Ⓛ	—	1-131-411-00 Ⓛ	—	1-131-348-00 Ⓛ
2.2	1-131-424-00 Ⓛ	—	1-131-419-00 Ⓛ	—	—	1-131-414-00 Ⓛ	—	1-131-355-00 Ⓛ	1-131-349-00 Ⓛ
3.3	—	1-131-422-00 Ⓛ	—	—	1-131-417-00 Ⓛ	—	1-131-362-00 Ⓛ	—	1-131-356-00 Ⓛ
4.7	1-131-425-00 Ⓛ	—	—	1-131-420-00 Ⓛ	—	1-131-363-00 Ⓛ	—	1-131-357-00 Ⓛ	1-131-351-00 Ⓛ
6.8	—	1-131-423-00 Ⓛ	—	1-131-376-00 Ⓛ	—	1-131-370-00 Ⓛ	—	1-131-364-00 Ⓛ	1-131-358-00 Ⓛ
10	1-131-426-00 Ⓛ	1-131-383-00 Ⓛ	—	1-131-377-00 Ⓛ	—	1-131-371-00 Ⓛ	—	1-131-365-00 Ⓛ	1-131-359-00 Ⓛ
15	1-131-390-00 Ⓛ	1-131-384-00 Ⓛ	—	1-131-378-00 Ⓛ	—	1-131-372-00 Ⓛ	—	1-131-366-00 Ⓛ	1-131-360-00 Ⓛ
22	1-131-391-00 Ⓛ	1-131-385-00 Ⓛ	—	1-131-379-00 Ⓛ	—	1-131-373-00 Ⓛ	—	—	—
33	1-131-392-00 Ⓛ	1-131-386-00 Ⓛ	—	1-131-380-00 Ⓛ	—	1-131-374-00 Ⓛ	—	—	—
47	1-131-394-00 Ⓛ	1-131-388-00 Ⓛ	—	1-131-381-00 Ⓛ	—	—	—	—	—
68	1-131-394-00 Ⓛ	1-131-388-00 Ⓛ	—	—	—	—	—	—	—
100	1-131-395-00 Ⓛ	—	—	—	—	—	—	—	—

TANTALUM CAPACITORS

CAP. (μF)	RATING							—	
	3 VOLT.	6.3 VOLT.	10 VOLT.	16 VOLT.	20 VOLT.	25 VOLT.	35 VOLT.		
PART No.	PART No.	PART No.	PART No.	PART No.	PART No.	PART No.	PART No.	PART No.	PART No.
0.033									1-131-273-00 Ⓛ
0.047									1-131-274-00 Ⓛ
0.068									1-131-275-00 Ⓛ
0.1									1-131-276-00 Ⓛ
0.15									1-131-277-00 Ⓛ
0.22									1-131-262-00 Ⓛ
0.33									1-131-263-00 Ⓛ
0.47									1-131-264-00 Ⓛ
0.68									1-131-265-00 Ⓛ
1.0									1-131-266-00 Ⓛ
1.5		1-131-250-00 Ⓛ	—	—	—	—	—	1-131-267-00 Ⓛ	—
2.2		—	—	1-131-169-00 Ⓛ	—	—	—	1-131-268-00 Ⓛ	1-131-278-00 Ⓛ
3.3		—	—	1-131-255-00 Ⓛ	—	—	—	1-131-269-00 Ⓛ	1-131-279-00 Ⓛ
4.7		1-131-251-00 Ⓛ	—	1-131-171-00 Ⓛ	—	—	—	1-131-270-00 Ⓛ	—
6.8		—	—	—	—	—	—	—	—
10		—	—	1-131-256-00 Ⓛ	—	—	—	1-131-271-00 Ⓛ	—
15		—	—	1-131-252-00 Ⓛ	—	—	—	1-131-272-00 Ⓛ	—
22		—	—	—	—	—	—	—	—
33	1-131-176-00 Ⓛ	—	1-131-253-00 Ⓛ	—	1-131-257-00 Ⓛ	—	—	—	1-131-283-00 Ⓛ
47	1-131-288-00 Ⓛ	—	1-131-174-00 Ⓛ	—	1-131-173-00 Ⓛ	—	—	—	1-131-284-00 Ⓛ
100	1-131-177-00 Ⓛ	—	—	—	—	—	—	—	—

1/4 WATT CARBON RESISTORS [Ⓐ]

Note: Circled letter [Ⓐ] is applicable to European models only.


Ω	Part No.												
1.0	1-246-401-00	10	1-246-425-00	100	1-246-449-00	1.0k	1-246-473-00	10k	1-246-497-00	100k	1-246-521-00	1.0M	1-246-545-00
1.1	1-246-402-00	11	1-246-426-00	110	1-246-450-00	1.1k	1-246-474-00	11k	1-246-498-00	110k	1-246-522-00	1.1M	1-210-814-00
1.2	1-246-403-00	12	1-246-427-00	120	1-246-451-00	1.2k	1-246-475-00	12k	1-246-499-00	120k	1-246-523-00	1.2M	1-210-815-00
1.3	1-246-404-00	13	1-246-428-00	130	1-246-452-00	1.3k	1-246-576-00	13k	1-246-500-00	130k	1-246-524-00	1.3M	1-210-816-00
1.5	1-246-405-00	15	1-246-429-00	150	1-246-453-00	1.5k	1-246-577-00	15k	1-246-501-00	150k	1-246-525-00	1.5M	1-210-817-00
1.6	1-246-406-00	16	1-246-430-00	160	1-246-454-00	1.6k	1-246-578-00	16k	1-246-502-00	160k	1-246-526-00	1.6M	1-210-818-00
1.8	1-246-407-00	18	1-246-431-00	180	1-246-455-00	1.8k	1-246-579-00	18k	1-246-503-00	180k	1-246-527-00	1.8M	1-210-819-00
2.0	1-246-408-00	20	1-246-432-00	200	1-246-456-00	2.0k	1-246-580-00	20k	1-246-504-00	200k	1-246-528-00	2.0M	1-210-820-00
2.2	1-246-409-00	22	1-246-433-00	220	1-246-457-00	2.2k	1-246-581-00	22k	1-246-505-00	220k	1-246-529-00	2.2M	1-210-821-00
2.4	1-246-410-00	24	1-246-434-00	240	1-246-458-00	2.4k	1-246-582-00	24k	1-246-506-00	240k	1-246-530-00	2.4M	1-244-754-00
2.7	1-246-411-00	27	1-246-435-00	270	1-246-459-00	2.7k	1-246-583-00	27k	1-246-507-00	270k	1-246-531-00	2.7M	1-244-755-00
3.0	1-246-412-00	30	1-246-436-00	300	1-246-460-00	3.0k	1-246-584-00	30k	1-246-508-00	300k	1-246-532-00	3.0M	1-244-756-00
3.3	1-246-413-00	33	1-246-437-00	330	1-246-461-00	3.3k	1-246-585-00	33k	1-246-509-00	330k	1-246-533-00	3.3M	1-244-757-00
3.6	1-246-414-00	36	1-246-438-00	360	1-246-462-00	3.6k	1-246-586-00	36k	1-246-510-00	360k	1-246-534-00	3.6M	1-244-758-00
3.9	1-246-415-00	39	1-246-439-00	390	1-246-463-00	3.9k	1-246-587-00	39k	1-246-511-00	390k	1-246-535-00	3.9M	1-244-759-00
4.3	1-246-416-00	43	1-246-440-00	430	1-246-464-00	4.3k	1-246-488-00	43k	1-246-512-00	430k	1-246-536-00	4.3M	1-244-760-00
4.7	1-246-417-00	47	1-246-441-00	470	1-246-465-00	4.7k	1-246-489-00	47k	1-246-513-00	470k	1-246-537-00	4.7M	1-244-761-00
5.1	1-246-418-00	51	1-246-442-00	510	1-246-466-00	5.1k	1-246-490-00	51k	1-246-514-00	510k	1-246-538-00	5.1M	1-244-762-00
5.6	1-246-419-00	56	1-246-443-00	560	1-246-467-00	5.6k	1-246-491-00	56k	1-246-515-00	560k	1-246-539-00		
6.2	1-246-420-00	62	1-246-444-00	620	1-246-468-00	6.2k	1-246-492-00	62k	1-246-516-00	620k	1-246-540-00		
6.8	1-246-421-00	68	1-246-445-00	680	1-246-469-00	6.8k	1-246-493-00	68k	1-246-517-00	680k	1-246-541-00		
7.5	1-246-422-00	75	1-246-446-00	750	1-246-470-00	7.5k	1-246-494-00	75k	1-246-518-00	750k	1-246-542-00		
8.2	1-246-423-00	82	1-246-447-00	820	1-246-471-00	8.2k	1-246-495-00	82k	1-246-519-00	820k	1-246-543-00		
9.1	1-246-424-00	91	1-246-448-00	910	1-246-472-00	9.1k	1-246-496-00	91k	1-246-520-00	910k	1-246-544-00		

Digitized by
www.freeservicemanuals.info
Gratis schema's

HARDWARE NOMENCLATURE

Screw:
L: Length in mm
D: Diameter in mm
Type of head

Unless otherwise indicated, it means cross-recessed head (Phillips type).

Indicated slotted-head only.

Nut, Washer, Retaining Ring www.freeservicemanuals.info

N 3
Diameter of usable screw or shaft
Reference designation

Reference Designation	Shape	Description	Remarks
SELF-TAPPING SCREWS			
TA		self-tapping screw	ex: TA, P 3 x 10
PTP		pan-head self-tapping screw	binding-head self-tapping (TA, B) screw for replacement
PTPWH		pan-head self-tapping screw with washer face	binding-head self-tapping (TA, B) screw and flat washer for replacement
PTTWH		pan-head thread-rolling screw with washer face	binding-head (B) screw and flat washer for replacement
SET SCREWS			
SC		set screw	
SC		hexagon-socket set screw	ex: SC 2.6 x 4, hexagon socket
NUT			
N		nut	
WASHERS			
W		flat washer	
SW		spring washer	
LW		internal-tooth lock washer	ex: LW3, internal
LW		external-tooth lock washer	ex: LW3, external
RETAINING RINGS			
E		retaining ring	
G		grip-type retaining ring	

Reference Designation	Shape	Description	Remarks
SCREWS			
P		pan-head screw	binding-head (B) screw for replacement
PWH		pan-head screw with washer face	binding-head (B) screw and flat washer for replacement
PS		pan-head screw with spring washer	binding-head (B) screw and spring washer for replacement
PSPW		pan-head screw with spring and flat washers	binding-head (B) screw and spring and flat washers for replacement
R		round-head screw	binding-head (B) screw for replacement
K		flat-countersunk-head screw	
RK		oval-countersunk-head screw	
B		binding-head screw	
T		truss-head screw	binding-head (B) screw for replacement
F		flat-fillister-head screw	
RF		fillister-head screw	
BV		braizer-head screw	

Sony Corporation

© 1979

9-958-600-11

79H05102-1

Printed in Japan